This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2020 Taiwan TST Round 3, 3

Let $\mathbb Z$ be the set of integers. We consider functions $f :\mathbb Z\to\mathbb Z$ satisfying \[f\left(f(x+y)+y\right)=f\left(f(x)+y\right)\] for all integers $x$ and $y$. For such a function, we say that an integer $v$ is [i]f-rare[/i] if the set \[X_v=\{x\in\mathbb Z:f(x)=v\}\] is finite and nonempty. (a) Prove that there exists such a function $f$ for which there is an $f$-rare integer. (b) Prove that no such function $f$ can have more than one $f$-rare integer. [i]Netherlands[/i]

2022 Macedonian Team Selection Test, Problem 3

We consider all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(f(n)+n)=n$ and $f(a+b-1) \leq f(a)+f(b)$ for all positive integers $a, b, n$. Prove that there are at most two values for $f(2022)$. $\textit {Proposed by Ilija Jovcheski}$

2017-IMOC, A4

Show that for all non-constant functions $f:\mathbb R\to\mathbb R$, there are two real numbers $x,y$ such that $$f(x+f(y))>xf(y)+x.$$

1979 Austrian-Polish Competition, 4

Determine all functions $f : N_0 \to R$ satisfying $f (x+y)+ f (x-y)= f (3x)$ for all $x,y$.

1992 Austrian-Polish Competition, 6

A function $f: Z \to Z$ has the following properties: $f (92 + x) = f (92 - x)$ $f (19 \cdot 92 + x) = f (19 \cdot 92 - x)$ ($19 \cdot 92 = 1748$) $f (1992 + x) = f (1992 - x)$ for all integers $x$. Can all positive divisors of $92$ occur as values of f?

2014 Baltic Way, 4

Find all functions $f$ defined on all real numbers and taking real values such that \[f(f(y)) + f(x - y) = f(xf(y) - x),\] for all real numbers $x, y.$

2020 IMO Shortlist, A6

Find all functions $f : \mathbb{Z}\rightarrow \mathbb{Z}$ satisfying \[f^{a^{2} + b^{2}}(a+b) = af(a) +bf(b)\] for all integers $a$ and $b$

2014 Uzbekistan National Olympiad, 2

Find all functions $f:R\rightarrow R$ such that \[ f(x^3)+f(y^3)=(x+y)(f(x^2)+f(y^2)-f(xy)) \] for all $x,y\in R$.

PEN K Problems, 33

Find all functions $f: \mathbb{Q}\to \mathbb{Q}$ such that for all $x,y,z \in \mathbb{Q}$: \[f(x+y+z)+f(x-y)+f(y-z)+f(z-x)=3f(x)+3f(y)+3f(z).\]

2016 Belarus Team Selection Test, 1

a) Determine all functions $f:\mathbb{Z}\rightarrow\mathbb{Z}$ such that\[f(x-f(y))=f(f(x))-f(y)-1\]holds for all $x,y\in\mathbb{Z}$. (It is [url=https://artofproblemsolving.com/community/c6h1268817p6621849]2015 IMO Shortlist A2 [/url]) b) The same question for if \[f(x-f(y))=f(f(x))-f(y)-2\] for all integers $x,y$

2024 Iran MO (3rd Round), 2

A surjective function $g: \mathbb{C} \to \mathbb C$ is given. Find all functions $f: \mathbb{C} \to \mathbb C$ such that for all $x,y\in \mathbb C$ we have $$ |f(x)+g(y)| = | f(y) + g(x)|. $$ Proposed by [i]Mojtaba Zare, Amirabbas Mohammadi[/i]

2017 Baltic Way, 5

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $$f(x^2y)=f(xy)+yf(f(x)+y)$$ for all real numbers $x$ and $y$.

KoMaL A Problems 2022/2023, A. 835

Let $f^{(n)}(x)$ denote the $n^{\text{th}}$ iterate of function $f$, i.e $f^{(1)}(x)=f(x)$, $f^{(n+1)}(x)=f(f^{(n)}(x))$. Let $p(n)$ be a given polynomial with integer coefficients, which maps the positive integers into the positive integers. Is it possible that the functional equation $f^{(n)}(n)=p(n)$ has exactly one solution $f$ that maps the positive integers into the positive integers? [i]Submitted by Dávid Matolcsi and Kristóf Szabó, Budapest[/i]

2025 Kyiv City MO Round 1, Problem 4

Find all functions \( f : \mathbb{N} \to \mathbb{N} \) that satisfy the following condition: for any positive integers \( m \) and \( n \) such that \( m > n \) and \( m \) is not divisible by \( n \), if we denote by \( r \) the remainder of the division of \( m \) by \( n \), then the remainder of the division of \( f(m) \) by \( n \) is \( f(r) \). [i]Proposed by Mykyta Kharin[/i]

2023 Sinapore MO Open, P4

Find all functions $f: \mathbb{Z} \to \mathbb{Z}$, such that $$f(x+y)((f(x) - f(y))^2+f(xy))=f(x^3)+f(y^3)$$ for all integers $x, y$.

1977 IMO Longlists, 23

For which positive integers $n$ do there exist two polynomials $f$ and $g$ with integer coefficients of $n$ variables $x_1, x_2, \ldots , x_n$ such that the following equality is satisfied: \[\sum_{i=1}^n x_i f(x_1, x_2, \ldots , x_n) = g(x_1^2, x_2^2, \ldots , x_n^2) \ ? \]

Taiwan TST 2015 Round 1, 2

Given a positive integer $n \geq 3$. Find all $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that for any $n$ positive reals $a_1,...,a_n$, the following condition is always satisfied: $\sum_{i=1}^{n}(a_i-a_{i+1})f(a_i+a_{i+1}) = 0$ where $a_{n+1} = a_1$.

1997 IMO Shortlist, 10

Find all positive integers $ k$ for which the following statement is true: If $ F(x)$ is a polynomial with integer coefficients satisfying the condition $ 0 \leq F(c) \leq k$ for each $ c\in \{0,1,\ldots,k \plus{} 1\}$, then $ F(0) \equal{} F(1) \equal{} \ldots \equal{} F(k \plus{} 1)$.

1999 Ukraine Team Selection Test, 9

Find all functions $u : R \to R$ for which there is a strictly increasing function $f : R \to R$ such that $f(x+y) = f(x)u(y)+ f(y)$ for all $x,y \in R$.

2010 Dutch IMO TST, 2

Find all functions $f : R \to R$ which satisfy $f(x) = max_{y\in R} (2xy - f(y))$ for all $x \in R$.

1996 IMO Shortlist, 5

Show that there exists a bijective function $ f: \mathbb{N}_{0}\to \mathbb{N}_{0}$ such that for all $ m,n\in \mathbb{N}_{0}$: \[ f(3mn \plus{} m \plus{} n) \equal{} 4f(m)f(n) \plus{} f(m) \plus{} f(n). \]

2019 Korea National Olympiad, 5

Find all functions $f$ such that $f:\mathbb{R}\rightarrow \mathbb{R}$ and $f(f(x)-x+y^2)=yf(y)$

2000 IMO Shortlist, 3

Find all pairs of functions $ f : \mathbb R \to \mathbb R$, $g : \mathbb R \to \mathbb R$ such that \[f \left( x + g(y) \right) = xf(y) - y f(x) + g(x) \quad\text{for all } x, y\in\mathbb{R}.\]

2022 Singapore MO Open, Q3

Find all functions $f:\mathbb{Z}^+\rightarrow \mathbb{Z}^+$ satisfying $$m!!+n!!\mid f(m)!!+f(n)!!$$for each $m,n\in \mathbb{Z}^+$, where $n!!=(n!)!$ for all $n\in \mathbb{Z}^+$. [i]Proposed by DVDthe1st[/i]

1996 Estonia Team Selection Test, 3

Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy for all $x$: $(i)$ $f(x)=-f(-x);$ $(ii)$ $f(x+1)=f(x)+1;$ $(iii)$ $f\left( \frac{1}{x}\right)=\frac{1}{x^2}f(x)$ for $x\ne 0$