This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2025 Azerbaijan IZhO TST, 4

Find all functions $f:\mathbb{Q}\rightarrow\mathbb{Q}$ and $g:\mathbb{Q}\rightarrow\mathbb{Q}$ such that $$f(f(x)+yg(x))=(x+1)g(y)+f(y)$$ for any $x;y\in\mathbb{Q}$

2012 Hanoi Open Mathematics Competitions, 5

Let $f(x)$ be a function such that $f(x)+2f\left(\frac{x+2010}{x-1}\right)=4020 - x$ for all $x \ne 1$. Then the value of $f(2012)$ is (A) $2010$, (B) $2011$, (C) $2012$, (D) $2014$, (E) None of the above.

PEN K Problems, 12

Find all functions $f:\mathbb{N} \to \mathbb{N}$ such that for all $m,n\in \mathbb{N}$: [list][*] $f(2)=2$, [*] $f(mn)=f(m)f(n)$, [*] $f(n+1)>f(n)$. [/list]

2008 IMO Shortlist, 5

For every $ n\in\mathbb{N}$ let $ d(n)$ denote the number of (positive) divisors of $ n$. Find all functions $ f: \mathbb{N}\to\mathbb{N}$ with the following properties: [list][*] $ d\left(f(x)\right) \equal{} x$ for all $ x\in\mathbb{N}$. [*] $ f(xy)$ divides $ (x \minus{} 1)y^{xy \minus{} 1}f(x)$ for all $ x$, $ y\in\mathbb{N}$.[/list] [i]Proposed by Bruno Le Floch, France[/i]

PEN K Problems, 18

Find all functions $f: \mathbb{Q}\to \mathbb{R}$ such that for all $x,y\in \mathbb{Q}$: \[f(xy)=f(x)f(y)-f(x+y)+1.\]

2020 Greece Team Selection Test, 1

Let $R_+=(0,+\infty)$. Find all functions $f: R_+ \to R_+$ such that $f(xf(y))+f(yf(z))+f(zf(x))=xy+yz+zx$, for all $x,y,z \in R_+$. by Athanasios Kontogeorgis (aka socrates)

2008 Postal Coaching, 4

Find all functions $f : R \to R$ such that $$f(xf(y))= (1 - y)f(xy) + x^2y^2f(y)$$ for all reals $x, y$.

2001 Czech And Slovak Olympiad IIIA, 1

Determine all polynomials $P$ such that for every real number $x$, $P(x)^2 +P(-x) = P(x^2)+P(x)$

2019 China Team Selection Test, 5

Determine all functions $f: \mathbb{Q} \to \mathbb{Q}$ such that $$f(2xy + \frac{1}{2}) + f(x-y) = 4f(x)f(y) + \frac{1}{2}$$ for all $x,y \in \mathbb{Q}$.

2013 Dutch BxMO/EGMO TST, 4

Determine all functions $f:\mathbb{R}\to\mathbb{R}$ satisfying \[f(x+yf(x))=f(xf(y))-x+f(y+f(x))\]

2021 Taiwan TST Round 2, 5

Let $\|x\|_*=(|x|+|x-1|-1)/2$. Find all $f:\mathbb{N}\to\mathbb{N}$ such that \[f^{(\|f(x)-x\|_*)}(x)=x, \quad\forall x\in\mathbb{N}.\] Here $f^{(0)}(x)=x$ and $f^{(n)}(x)=f(f^{(n-1)}(x))$ for all $n\in\mathbb{N}$. [i]Proposed by usjl[/i]

2021 Israel Olympic Revenge, 1

Let $\mathbb N$ be the set of positive integers. Find all functions $f\colon\mathbb N\to\mathbb N$ such that $$\frac{f(x)-f(y)+x+y}{x-y+1}$$ is an integer, for all positive integers $x,y$ with $x>y$.

2013 Bangladesh Mathematical Olympiad, 2

Higher Secondary P2 Let $g$ be a function from the set of ordered pairs of real numbers to the same set such that $g(x, y)=-g(y, x)$ for all real numbers $x$ and $y$. Find a real number $r$ such that $g(x, x)=r$ for all real numbers $x$.

2011 Germany Team Selection Test, 3

We call a function $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ [i]good[/i] if for all $x,y \in \mathbb{Q}^+$ we have: $$f(x)+f(y)\geq 4f(x+y).$$ a) Prove that for all good functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ and $x,y,z \in \mathbb{Q}^+$ $$f(x)+f(y)+f(z) \geq 8f(x+y+z)$$ b) Does there exists a good functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ and $x,y,z \in \mathbb{Q}^+$ such that $$f(x)+f(y)+f(z) < 9f(x+y+z) ?$$

2012 China Team Selection Test, 3

Given an integer $n\ge 2$, a function $f:\mathbb{Z}\rightarrow \{1,2,\ldots,n\}$ is called [i]good[/i], if for any integer $k,1\le k\le n-1$ there exists an integer $j(k)$ such that for every integer $m$ we have \[f(m+j(k))\equiv f(m+k)-f(m) \pmod{n+1}. \] Find the number of [i]good[/i] functions.

2024 Dutch BxMO/EGMO TST, IMO TSTST, 3

Find all pairs of positive integers $(a, b)$ such that $f(x)=x$ is the only function $f:\mathbb{R}\to \mathbb{R}$ that satisfies $$f^a(x)f^b(y)+f^b(x)f^a(y)=2xy$$ for all $x, y\in \mathbb{R}$.

Russian TST 2016, P3

Let $2\mathbb{Z} + 1$ denote the set of odd integers. Find all functions $f:\mathbb{Z} \mapsto 2\mathbb{Z} + 1$ satisfying \[ f(x + f(x) + y) + f(x - f(x) - y) = f(x+y) + f(x-y) \] for every $x, y \in \mathbb{Z}$.

2016 Baltic Way, 8

Find all real numbers $a$ for which there exists a non-constant function $f :\Bbb R \to \Bbb R$ satisfying the following two equations for all $x\in \Bbb R:$ i) $f(ax) = a^2f(x)$ and ii) $f(f(x)) = a f(x).$

1994 Austrian-Polish Competition, 8

Given real numbers $a, b$, find all functions $f: R \to R$ satisfying $f(x,y) = af (x,z) + bf(y,z)$ for all $x,y,z \in R$.

VMEO III 2006 Shortlist, A1

Find all functions $f:R \to R$ such that $$f(x^2+f(y)-y) =(f(x))^2-f(y)$$ for all $x,y \in R$

2011 Greece Team Selection Test, 3

Find all functions $f,g: \mathbb{Q}\to \mathbb{Q}$ such that the following two conditions hold: $$f(g(x)-g(y))=f(g(x))-y \ \ (1)$$ $$g(f(x)-f(y))=g(f(x))-y\ \ (2)$$ for all $x,y \in \mathbb{Q}$.

2018 Belarusian National Olympiad, 10.2

Determine, whether there exist a function $f$ defined on the set of all positive real numbers and taking positive values such that $f(x+y)\geqslant yf(x)+f(f(x))$ for all positive x and y?

2016 Canadian Mathematical Olympiad Qualification, 4

Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(x + f(y)) + f(x - f(y)) = x.$$

2021 Olimphíada, 6

Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f : \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that, for all $m, n \in \mathbb{Z}_{>0 }$: $$f(mf(n)) + f(n) | mn + f(f(n)).$$

2021 Balkan MO, 2

Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, such that $f(x+f(x)+f(y))=2f(x)+y$ for all positive reals $x,y$. [i]Proposed by Athanasios Kontogeorgis, Greece[/i]