Found problems: 1513
2004 National High School Mathematics League, 8
Function $f:\mathbb{R}\to\mathbb{R}$, satisfies that $f(0)=1$, and $f(xy+1)=f(x)f(y)-f(y)-x+2$, then $f(x)=$________.
2020 OMMock - Mexico National Olympiad Mock Exam, 6
Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ such that
\[f(f(x) - y) = f(xy) + f(x)f(-y)\]
for any two real numbers $x, y$.
[i]Proposed by Pablo Valeriano[/i]
2024 Kazakhstan National Olympiad, 3
Find all functions $f: \mathbb R^+ \to \mathbb R^+$ such that \[ f \left( x+\frac{f(xy)}{x} \right) = f(xy) f \left( y + \frac 1y \right) \] holds for all $x,y\in\mathbb R^+.$
1965 Dutch Mathematical Olympiad, 5
The function ƒ. which is defined for all real numbers satisfies:
$$f(x+y)+f(x-y)=2f(x)+2f(y)$$
Prove that $f(0) = 0$, $f(-x) = f(x)$, $f(2x) = 4 f (x)$, $$f(x + y + z) = f(x + y) + f(y + z) + f(z + x) -f(x) - f(y) -f(z).$$
2019 Israel Olympic Revenge, P4
Call a function $\mathbb Z_{>0}\rightarrow \mathbb Z_{>0}$ $\emph{M-rugged}$ if it is unbounded and satisfies the following two conditions:
$(1)$ If $f(n)|f(m)$ and $f(n)<f(m)$ then $n|m$.
$(2)$ $|f(n+1)-f(n)|\leq M$.
a. Find all $1-rugged$ functions.
b. Determine if the number of $2-rugged$ functions is smaller than $2019$.
PEN K Problems, 29
Find all functions $ f: \mathbb{Z}\setminus\{0\}\to \mathbb{Q}$ such that for all $ x,y \in \mathbb{Z}\setminus\{0\}$:
\[ f \left( \frac{x+y}{3}\right) =\frac{f(x)+f(y)}{2}, \; \; x, y \in \mathbb{Z}\setminus\{0\}\]
2017 Czech-Polish-Slovak Match, 3
Find all functions ${f : (0, +\infty) \rightarrow R}$ satisfying $f(x) - f(x+ y) = f \left( \frac{x}{y}\right) f(x + y)$ for all $x, y > 0$.
(Austria)
2020 Greece Team Selection Test, 1
Let $R_+=(0,+\infty)$. Find all functions $f: R_+ \to R_+$ such that
$f(xf(y))+f(yf(z))+f(zf(x))=xy+yz+zx$, for all $x,y,z \in R_+$.
by Athanasios Kontogeorgis (aka socrates)
2014 Belarus Team Selection Test, 1
Find all functions$ f : R_+ \to R_+$ such that $f(f(x)+y)=x+f(y)$ , for all $x, y \in R_+$
(Folklore)
[hide=PS]Using search terms [color=#f00]+ ''f(x+f(y))'' + ''f(x)+y[/color]''
I found the same problem [url=https://artofproblemsolving.com/community/c6h1122140p5167983]in Q[/url], [url=https://artofproblemsolving.com/community/c6h1597644p9926878]continuous in R[/url], [url=https://artofproblemsolving.com/community/c6h1065586p4628238]strictly monotone in R[/url] , [url=https://artofproblemsolving.com/community/c6h583742p3451211 ]without extra conditions in R[/url]
[/hide]
2011 Cuba MO, 5
Determine all functions $f : R \to R$ such that
$$f(x)f(y) = 2f(x + y) + 9xy \ \ \forall x, y \in R.$$
2021 Peru EGMO TST, 6
Find all functions $f : R \to R$ such that $$f(x + y) \ge xf(x) + yf(y)$$, for all $x, y \in R$ .
2014 VTRMC, Problem 6
Let $S$ denote the set of $2$ by $2$ matrices with integer entries and determinant $1$, and let $T$ denote those matrices of $S$ which are congruent to the identity matrix $I\pmod3$ (so $\begin{pmatrix}a&b\\c&d\end{pmatrix}\in T$ means that $a,b,c,d\in\mathbb Z,ad-bc=1,$ and $3$ divides $b,c,a-1,d-1$).
(a) Let $f:T\to\mathbb R$ be a function such that for every $X,Y\in T$ with $Y\ne I$, either $f(XY)>f(X)$ or $f(XY^{-1})>f(X)$. Show that given two finite nonempty subsets $A,B$ of $T$, there are matrices $a\in A$ and $b\in B$ such that if $a'\in A$, $b'\in B$ and $a'b'=ab$, then $a'=a$ and $b'=b$.
(b) Show that there is no $f:S\to\mathbb R$ such that for every $X,Y\in S$ with $Y\ne\pm I$, either $f(XY)>f(X)$ or $f(XY^{-1})>f(X)$.
2018 IFYM, Sozopol, 2
a) The real number $a$ and the continuous function $f : [a, \infty) \rightarrow [a, \infty)$ are such that $|f(x)-f(y)| < |x–y|$ for every two different $x, y \in [a, \infty)$. Is it always true that the equation $f(x)=x$ has only one solution in the interval $[a, \infty)$?
b) The real numbers $a$ and $b$ and the continuous function $f : [a, b] \rightarrow [a, b]$ are such that $|f(x)-f(y)| < |x–y|$, for every two different $x, y \in [a, b]$. Is it always true that the equation $f(x)=x$ has only one solution in the interval $[a, b]$?
1999 Switzerland Team Selection Test, 3
Find all functions $f : R -\{0\} \to R$ that satisfy $\frac{1}{x}f(-x)+ f\left(\frac{1}{x}\right)= x$ for all $x \ne 0$.
1999 Mongolian Mathematical Olympiad, Problem 6
Let $f$ be a map of the plane into itself with the property that if $d(A,B)=1$, then $d(f(A),f(B))=1$, where $d(X,Y)$ denotes the distance between points $X$ and $Y$. Prove that for any positive integer $n$, $d(A,B)=n$ implies $d(f(A),f(B))=n$.
1997 IMO Shortlist, 22
Does there exist functions $ f,g: \mathbb{R}\to\mathbb{R}$ such that $ f(g(x)) \equal{} x^2$ and $ g(f(x)) \equal{} x^k$ for all real numbers $ x$
a) if $ k \equal{} 3$?
b) if $ k \equal{} 4$?
2022 Baltic Way, 5
Let $\mathbb{R}$ be the set of real numbers. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0)+1=f(1)$ and for any real numbers $x$ and $y$,
$$ f(xy-x)+f(x+f(y))=yf(x)+3 $$
PEN K Problems, 26
The function $f: \mathbb{N}\to\mathbb{N}_{0}$ satisfies for all $m,n\in\mathbb{N}$: \[f(m+n)-f(m)-f(n)=0\text{ or }1, \; f(2)=0, \; f(3)>0, \; \text{ and }f(9999)=3333.\] Determine $f(1982)$.
2021 Israel TST, 2
Find all unbounded functions $f:\mathbb Z \rightarrow \mathbb Z$ , such that $f(f(x)-y)|x-f(y)$ holds for any integers $x,y$.
2013 Stars Of Mathematics, 4
Given a (fixed) positive integer $N$, solve the functional equation
\[f \colon \mathbb{Z} \to \mathbb{R}, \ f(2k) = 2f(k) \textrm{ and } f(N-k) = f(k), \ \textrm{for all } k \in \mathbb{Z}.\]
[i](Dan Schwarz)[/i]
Kvant 2020, M2613
Find all functions $f : \mathbb{N}\rightarrow{\mathbb{N}}$ such that for all positive integers $m$ and $n$ the number $f(m)+n-m$ is divisible by $f(n)$.
2024 IFYM, Sozopol, 5
Find all functions \(f:\mathbb{R}^{+} \to \mathbb{R}^{+}\) such that
\[
f(x) > x \ \ \text{and} \ \ f(x-y+xy+f(y)) = f(x+y) + xf(y)
\]
for arbitrary positive real numbers \(x\) and \(y\).
1982 IMO, 1
The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ \[ f(m+n)-f(m)-f(n)=0 \text{ or } 1. \] Determine $f(1982)$.
2024 Korea Winter Program Practice Test, Q7
Find all functions $f, g: \mathbb{R} \rightarrow \mathbb{R} $ satisfying the following conditions:
[list][*] $f$ is not a constant function and if $x \le y$ then $f(x)\le f(y)$
[*] For all real number $x$, $f(g(x))=g(f(x))=0$
[*] For all real numbers $x$ and $y$, $f(x)+f(y)+g(x)+g(y)=f(x+y)+g(x+y)$
[*] For all real numbers $x$ and $y$, $f(x)+f(y)+f(g(x)+g(y))=f(x+y)$
[/list]
2001 Mongolian Mathematical Olympiad, Problem 1
Prove that for every positive integer $n$ there exists a polynomial $p(x)$ of degree $n$ with real coefficients, having $n$ distinct real roots and satisfying
$$p(x)p(4-x)=p(x(4-x))$$