This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2010 Contests, 2

Find all the continuous functions $f : \mathbb{R} \mapsto\mathbb{R}$ such that $\forall x,y \in \mathbb{R}$, $(1+f(x)f(y))f(x+y)=f(x)+f(y)$.

2023 SG Originals, Q6

$\mathbb{Z}[x]$ represents the set of all polynomials with integer coefficients. Find all functions $f:\mathbb{Z}[x]\rightarrow \mathbb{Z}[x]$ such that for any 2 polynomials $P,Q$ with integer coefficients and integer $r$, the following statement is true. \[P(r)\mid Q(r) \iff f(P)(r)\mid f(Q)(r).\] (We define $a|b$ if and only if $b=za$ for some integer $z$. In particular, $0|0$.) [i]Proposed by the4seasons.[/i]

2001 Iran MO (3rd Round), 1

Find all functions $ f: \mathbb Q\longrightarrow\mathbb Q$ such that: $ f(x)+f(\frac1x)=1$ $ 2f(f(x))=f(2x)$

VI Soros Olympiad 1999 - 2000 (Russia), 10.1

Find all real functions of a real numbers, such that for any $x$, $y$ and $z$ holds the equality $$ f(x)f(y)f(z)-f(xyz)=xy+yz+xz+x+y+z.$$

2009 Ukraine National Mathematical Olympiad, 4

Find all functions $f : \mathbb R \to \mathbb R$ such that \[f\left(x+xy+f(y)\right)= \left( f(x)+\frac 12 \right) \left( f(y)+\frac 12 \right) \qquad \forall x,y \in \mathbb R.\]

2023 Costa Rica - Final Round, 3.1

Let $\mathbb Z^{\geq 0}$ be the set of all non-negative integers. Consider a function $f:\mathbb Z^{\geq 0} \to \mathbb Z^{\geq 0}$ such that $f(0)=1$ and $f(1)=1$, and that for any integer $n \geq 1$, we have \[f(n + 1)f(n - 1) = nf(n)f(n - 1) + (f(n))^2.\] Determine the value of $f(2023)/f(2022)$.

1997 Belarusian National Olympiad, 2

Suppose that a function $f : R^+ \to R^+$ satisfies $$f(f(x))+x = f(2x).$$ Prove that $f(x) \ge x$ for all $x >0$

2007 Italy TST, 3

Find all $f: R \longrightarrow R$ such that \[f(xy+f(x))=xf(y)+f(x)\] for every pair of real numbers $x,y$.

2021 Flanders Math Olympiad, 4

(a) Prove that for every $x \in R$ holds that $$-1 \le \frac{x}{x^2 + x + 1} \le \frac 13$$ (b) Determine all functions $f : R \to R$ for which for every $x \in R$ holds that $$f \left( \frac{x}{x^2 + x + 1} \right) = \frac{x^2}{x^4 + x^2 + 1}$$

PEN K Problems, 9

Find all functions $f: \mathbb{N}_{0}\rightarrow \mathbb{N}_{0}$ such that for all $n\in \mathbb{N}_{0}$: \[f(f(n))+f(n)=2n+6.\]

2019 Middle European Mathematical Olympiad, 1

Find all functions $f:\mathbb{R} \to \mathbb{R}$ such that for any two real numbers $x,y$ holds $$f(xf(y)+2y)=f(xy)+xf(y)+f(f(y)).$$ [i]Proposed by Patrik Bak, Slovakia[/i]

2009 Germany Team Selection Test, 2

For every $ n\in\mathbb{N}$ let $ d(n)$ denote the number of (positive) divisors of $ n$. Find all functions $ f: \mathbb{N}\to\mathbb{N}$ with the following properties: [list][*] $ d\left(f(x)\right) \equal{} x$ for all $ x\in\mathbb{N}$. [*] $ f(xy)$ divides $ (x \minus{} 1)y^{xy \minus{} 1}f(x)$ for all $ x$, $ y\in\mathbb{N}$.[/list] [i]Proposed by Bruno Le Floch, France[/i]

2014 Korea National Olympiad, 2

Determine all the functions $f : \mathbb{R}\rightarrow\mathbb{R}$ that satisfies the following. $f(xf(x)+f(x)f(y)+y-1)=f(xf(x)+xy)+y-1$

2018-IMOC, A4

Find all functions $f:\mathbb R\to\mathbb R$ such that $$f\left(x^2+f(y)\right)-y=(f(x+y)-y)^2$$holds for all $x,y\in\mathbb R$.

2019 Switzerland - Final Round, 6

Show that there exists no function $f : Z \to Z$ such that for all $m, n \in Z$ $$f(m + f(n)) = f(m) - n.$$

2019 IFYM, Sozopol, 5

The non-decreasing functions $f,g: \mathbb{R}\rightarrow \mathbb{R}$ are such that $f(r)\leq g(r)$ for $\forall$ rational numbers $r$. Is it true that $f(x)\leq g(x)$ for $\forall$ real numbers $x$?

1993 IMO Shortlist, 5

Let $S$ be the set of all pairs $(m,n)$ of relatively prime positive integers $m,n$ with $n$ even and $m < n.$ For $s = (m,n) \in S$ write $n = 2^k \cdot n_o$ where $k, n_0$ are positive integers with $n_0$ odd and define \[ f(s) = (n_0, m + n - n_0). \] Prove that $f$ is a function from $S$ to $S$ and that for each $s = (m,n) \in S,$ there exists a positive integer $t \leq \frac{m+n+1}{4}$ such that \[ f^t(s) = s, \] where \[ f^t(s) = \underbrace{ (f \circ f \circ \cdots \circ f) }_{t \text{ times}}(s). \] If $m+n$ is a prime number which does not divide $2^k - 1$ for $k = 1,2, \ldots, m+n-2,$ prove that the smallest value $t$ which satisfies the above conditions is $\left [\frac{m+n+1}{4} \right ]$ where $\left[ x \right]$ denotes the greatest integer $\leq x.$

2021 Turkey Team Selection Test, 8

Let \(c\) be a real number. For all \(x\) and \(y\) real numbers we have, \[f(x-f(y))=f(x-y)+c(f(x)-f(y))\] and \(f(x)\) is not constant. \(a)\) Find all possible values of \(c\). \(b)\) Can \(f\) be periodic?

2025 Taiwan TST Round 2, A

Find all $g:\mathbb{R}\to\mathbb{R}$ so that there exists a unique $f:\mathbb{R}\to\mathbb{R}$ satisfying $f(0)=g(0)$ and \[f(x+g(y))+f(-x-g(-y))=g(x+f(y))+g(-x-f(-y))\] for all $x,y\in\mathbb{R}$. [i] Proposed by usjl[/i]

2018 Abels Math Contest (Norwegian MO) Final, 3b

Find all real functions $f$ defined on the real numbers except zero, satisfying $f(2019) = 1$ and $f(x)f(y)+ f\left(\frac{2019}{x}\right) f\left(\frac{2019}{y}\right) =2f(xy)$ for all $x,y \ne 0$

2018 Dutch IMO TST, 4

Let $A$ be a set of functions $f : R\to R$. For all $f_1, f_2 \in A$ there exists a $f_3 \in A$ such that $f_1(f_2(y) - x)+ 2x = f_3(x + y)$ for all $x, y \in R$. Prove that for all $f \in A$, we have $f(x - f(x))= 0$ for all $x \in R$.

2020 Peru IMO TST, 4

Find all functions $\,f: {\mathbb{N}}\rightarrow {\mathbb{N}}\,$ such that\[f(a)^{bf(b^2)}\le a^{f(b)^3}\hspace{0.2in}\text{for all}\,a,b\in \mathbb{N}. \]

2015 IFYM, Sozopol, 1

Determine all functions $f:\mathbb{Z} \rightarrow \mathbb{Z}$ which satisfy the following equations: a) $f(f(n))=4n+3$ $\forall$ $n \in \mathbb{Z}$; b) $f(f(n)-n)=2n+3$ $\forall$ $n \in \mathbb{Z}$.

1989 Swedish Mathematical Competition, 2

Find all continuous functions $f$ such that $f(x)+ f(x^2) = 0$ for all real numbers $x$.

2023 Philippine MO, 8

Let $\mathcal{S}$ be the set of all points in the plane. Find all functions $f : \mathcal{S} \rightarrow \mathbb{R}$ such that for all nondegenerate triangles $ABC$ with orthocenter $H$, if $f(A) \leq f(B) \leq f(C)$, then $$f(A) + f(C) = f(B) + f(H).$$