This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2017 Dutch IMO TST, 4

Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $$(y + 1)f(x) + f(xf(y) + f(x + y))= y$$ for all $x, y \in \mathbb{R}$.

2007 Italy TST, 3

Find all $f: R \longrightarrow R$ such that \[f(xy+f(x))=xf(y)+f(x)\] for every pair of real numbers $x,y$.

1996 Israel National Olympiad, 2

Find all polynomials $P(x)$ satisfying $P(x+1)-2P(x)+P(x-1)= x$ for all $x$

2001 Moldova National Olympiad, Problem 3

Find all polynomials $P(x)$ with real coefficieints such that $P\left(x^2\right)=P(x)P(x-1)$ for all $x\in\mathbb R$.

2016 Switzerland Team Selection Test, Problem 9

Find all functions $f : \mathbb{R} \mapsto \mathbb{R} $ such that $$ \left(f(x)+y\right)\left(f(x-y)+1\right)=f\left(f(xf(x+1))-yf(y-1)\right)$$ for all $x,y \in \mathbb{R}$

2014 IMAC Arhimede, 1

The function $f: N \to N_0$ is such that $f (2) = 0, f (3)> 0, f (6042) = 2014$ and $f (m + n)- f (m) - f (n) \in\{0,1\}$ for all $m,n \in N$. Determine $f (2014)$. $N_0=\{0,1,2,...\}$

2002 Singapore Team Selection Test, 3

Find all functions $f : [0,\infty) \to [0,\infty)$ such that $f(f(x)) +f(x) = 12x$, for all $x \ge 0$.

2008 Mathcenter Contest, 6

Find all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying the equation \[ f(x^2+y^2+2f(xy)) = (f(x+y))^2. \] for all $x,y \in \mathbb{R}$.

1995 Italy TST, 3

A function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfies the conditions \[\begin{cases}f(x+24)\le f(x)+24\\ f(x+77)\ge f(x)+77\end{cases}\quad\text{for all}\ x\in\mathbb{R}\] Prove that $f(x+1)=f(x)+1$ for all real $x$.

2021 Bangladesh Mathematical Olympiad, Problem 1

For a positive integer $n$, let $A(n)$ be the equal to the remainder when $n$ is divided by $11$ and let $T(n)=A(1)+A(2)+A(3)+ \dots + A(n)$. Find the value of $$A(T(2021))$$

2004 Estonia National Olympiad, 4

Find all functions $f$ which are defined on all non-negative real numbers, take nonnegative real values only, and satisfy the condition $x \cdot f(y) + y\cdot f(x) = f(x) \cdot f(y) \cdot (f(x) + f(y))$ for all non-negative real numbers $x, y$.

2014 Grand Duchy of Lithuania, 1

Determine all functions $f : R \to R$ such that $f(xy + f(x)) = xf(y) + f(x)$ holds for any $x, y \in R$.

2014 Contests, 1b

Find all functions $f : R-\{0\} \to R$ which satisfy $(1 + y)f(x) - (1 + x)f(y) = yf(x/y) - xf(y/x)$ for all real $x, y \ne 0$, and which take the values $f(1) = 32$ and $f(-1) = -4$.

2004 Romania National Olympiad, 1

Find all continuous functions $f : \mathbb R \to \mathbb R$ such that for all $x \in \mathbb R$ and for all $n \in \mathbb N^{\ast}$ we have \[ n^2 \int_{x}^{x + \frac{1}{n}} f(t) \, dt = n f(x) + \frac12 . \] [i]Mihai Piticari[/i]

2022 ELMO Revenge, 4

Find all ordered pairs of integers $(a,b)$ such that there exists a function $f\colon \mathbb{N} \to \mathbb{N}$ satisfying $$f^{f(n)}(n)=an+b$$ For all $n\in \mathbb{N}$.

2001 Kazakhstan National Olympiad, 4

Find all functions $ f: \mathbb {R} \rightarrow \mathbb {R} $ satisfying the equality $ f (x ^ 2-y ^ 2) = (x-y) (f (x) + f (y)) $ for any $ x, y \in \mathbb {R} $.

PEN K Problems, 27

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $m,n\in \mathbb{N}$: \[f(f(m)+f(n))=m+n.\]

2014 Turkey Team Selection Test, 2

Find all $f$ functions from real numbers to itself such that for all real numbers $x,y$ the equation \[f(f(y)+x^2+1)+2x=y+(f(x+1))^2\] holds.

1997 Estonia National Olympiad, 2

A function $f$ satisfies the following condition for each $n\in N$: $f (1)+ f (2)+...+ f (n) = n^2 f (n)$. Find $f (1997)$ if $f (1) = 999$.

2008 VJIMC, Problem 2

Find all functions $f:(0,\infty)\to(0,\infty)$ such that $$f(f(f(x)))+4f(f(x))+f(x)=6x.$$

2005 Thailand Mathematical Olympiad, 14

A function $f : Z \to Z$ is given so that $f(m + n) = f(m) + f(n) + 2mn - 2548$ for all positive integers $m, n$. Given that $f(2548) = -2548$, find the value of $f(2)$.

2022 Francophone Mathematical Olympiad, 1

find all functions $f:\mathbb{Z} \to \mathbb{Z} $ such that $f(m+n)+f(m)f(n)=n^2(f(m)+1)+m^2(f(n)+1)+mn(2-mn)$ holds for all $m,n \in \mathbb{Z}$

2025 India STEMS Category B, 4

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all $x,y\in \mathbb{R}$, \[xf(y+x)+(y+x)f(y)=f(x^2+y^2)+2f(xy)\] [i]Proposed by Aritra Mondal[/i]

2019-IMOC, A5

Find all functions $f : \mathbb N \mapsto \mathbb N$ such that the following identity $$f^{x+1}(y)+f^{y+1}(x)=2f(x+y)$$ holds for all $x,y \in \mathbb N$

2020 Costa Rica - Final Round, 4

Consider the function $ h$, defined for all positive real numbers, such that: $$10x -6h(x) = 4h \left(\frac{2020}{x}\right) $$ for all $x > 0$. Find $h(x)$ and the value of $h(4)$.