Found problems: 1513
2022 Peru MO (ONEM), 3
Let $R$ be the set of real numbers and $f : R \to R$ be a function that satisfies:
$$f(xy) + y + f(x + f(y)) = (y + 1)f(x),$$ for all real numbers $x, y$.
a) Determine the value of $f(0)$.
b) Prove that $f(x) = 2-x$ for every real number $x$.
2019 India National OIympiad, 6
Let $f$ be a function defined from $((x,y) : x,y$ real, $xy\ne 0)$ to the set of all positive real numbers such that
$ (i) f(xy,z)= f(x,z)\cdot f(y,z)$ for all $x,y \ne 0$
$ (ii) f(x,yz)= f(x,y)\cdot f(x,z)$ for all $x,y \ne 0$
$ (iii) f(x,1-x) = 1 $ for all $x \ne 0,1$
Prove that
$ (a) f(x,x) = f(x,-x) = 1$ for all $x \ne 0$
$(b) f(x,y)\cdot f(y,x) = 1 $ for all $x,y \ne 0$
The condition (ii) was left out in the paper leading to an incomplete problem during contest.
2021 Science ON all problems, 1
Find all differentiable functions $f, g:[0,\infty) \to \mathbb{R}$ and the real constant $k\geq 0$ such that
\begin{align*} f(x) &=k+ \int_0^x \frac{g(t)}{f(t)}dt \\
g(x) &= -k-\int_0^x f(t)g(t) dt \end{align*}
and $f(0)=k, f'(0)=-k^2/3$ and also $f(x)\neq 0$ for all $x\geq 0$.\\ \\
[i] (Nora Gavrea)[/i]
2021 APMO, 5
Determine all Functions $f:\mathbb{Z} \to \mathbb{Z}$ such that $f(f(a)-b)+bf(2a)$ is a perfect square for all integers $a$ and $b$.
2007 Macedonia National Olympiad, 4
Find all functions $ f : \mathbb{R}\to\mathbb{R}$ that satisfy
\[ f (x^{3} \plus{} y^{3}) \equal{} x^{2}f (x) \plus{} yf (y^{2})
\]
for all $ x, y \in\mathbb R.$
2016 India IMO Training Camp, 2
Find all functions $f:\mathbb R\to\mathbb R$ such that $$f\left( x^2+xf(y)\right)=xf(x+y)$$ for all reals $x,y$.
2021 Saudi Arabia IMO TST, 6
Find all functions $f : \mathbb{Z}\rightarrow \mathbb{Z}$ satisfying
\[f^{a^{2} + b^{2}}(a+b) = af(a) +bf(b)\]
for all integers $a$ and $b$
JOM 2024, 3
Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for all $x, y\in\mathbb{R}^+$,
\[ \frac{f(x)}{y^2} - \frac{f(y)}{x^2} \le \left(\frac{1}{x}-\frac{1}{y}\right)^2\]
($\mathbb{R}^+$ denotes the set of positive real numbers.)
[i](Proposed by Ivan Chan Guan Yu)[/i]
2019 Thailand TST, 1
Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$
Russian TST 2019, P1
Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$
Kvant 2021, M2661
An infinite table whose rows and columns are numbered with positive integers, is given. For a sequence of functions
$f_1(x), f_2(x), \ldots $ let us place the number $f_i(j)$ into the cell $(i,j)$ of the table (for all $i, j\in \mathbb{N}$).
A sequence $f_1(x), f_2(x), \ldots $ is said to be {\it nice}, if all the numbers in the table are positive integers, and each positive integer appears exactly once. Determine if there exists a nice sequence of functions $f_1(x), f_2(x), \ldots $, such that each $f_i(x)$ is a polynomial of degree 101 with integer coefficients and its leading coefficient equals to 1.
1991 IMO Shortlist, 21
Let $ f(x)$ be a monic polynomial of degree $ 1991$ with integer coefficients. Define $ g(x) \equal{} f^2(x) \minus{} 9.$ Show that the number of distinct integer solutions of $ g(x) \equal{} 0$ cannot exceed $ 1995.$
2021 IMO Shortlist, A8
Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy $$(f(a)-f(b))(f(b)-f(c))(f(c)-f(a)) = f(ab^2+bc^2+ca^2) - f(a^2b+b^2c+c^2a)$$for all real numbers $a$, $b$, $c$.
[i]Proposed by Ankan Bhattacharya, USA[/i]
2019-IMOC, A4
Find all functions $f:\mathbb N\to\mathbb N$ so that
$$f^{2f(b)}(2a)=f(f(a+b))+a+b$$
holds for all positive integers $a,b$.
2008 Mathcenter Contest, 2
Find all the functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the functional equation $$f(xy^2)+f(x^2y)=y^2f(x)+x^2f(y)$$ for every $x,y\in\mathbb{R}$ and $f(2008) =f(-2008)$
[i](nooonuii)[/i]
2012 Middle European Mathematical Olympiad, 1
Let $ \mathbb{R} ^{+} $ denote the set of all positive real numbers. Find all functions $ \mathbb{R} ^{+} \to \mathbb{R} ^{+} $ such that
\[ f(x+f(y)) = yf(xy+1)\]
holds for all $ x, y \in \mathbb{R} ^{+} $.
1990 IMO Shortlist, 7
Let $ f(0) \equal{} f(1) \equal{} 0$ and
\[ f(n\plus{}2) \equal{} 4^{n\plus{}2} \cdot f(n\plus{}1) \minus{} 16^{n\plus{}1} \cdot f(n) \plus{} n \cdot 2^{n^2}, \quad n \equal{} 0, 1, 2, \ldots\]
Show that the numbers $ f(1989), f(1990), f(1991)$ are divisible by $ 13.$
2015 Korea - Final Round, 1
Find all functions $f: R \rightarrow R$ such that
$f(x^{2015} + (f(y))^{2015}) = (f(x))^{2015} + y^{2015}$ holds for all reals $x, y$
2016 Israel National Olympiad, 7
Find all functions $f:\mathbb{Z}\rightarrow\mathbb{C}$ such that $f(x(2y+1))=f(x(y+1))+f(x)f(y)$ holds for any two integers $x,y$.
2007 Korea Junior Math Olympiad, 6
Let $T = \{1,2,...,10\}$. Find the number of bijective functions $f : T\to T$ that satises the following for all $x \in T$:
$f(f(x)) = x$
$|f(x) - x| \ge 2$
1982 Austrian-Polish Competition, 6
An integer $a$ is given. Find all real-valued functions $f (x)$ defined on integers $x \ge a$, satisfying the equation $f (x+y) = f (x) f (y)$ for all $x,y \ge a$ with $x + y \ge a$.
2015 IFYM, Sozopol, 8
Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of positive integers. Find all functions $f$, defined on $\mathbb{N}$ and taking values in $\mathbb{N}$, such that $(n-1)^2< f(n)f(f(n)) < n^2+n$ for every positive integer $n$.
PEN K Problems, 19
Find all functions $f: \mathbb{Q}^{+}\to \mathbb{Q}^{+}$ such that for all $x,y \in \mathbb{Q}$: \[f \left( x+\frac{y}{x}\right) =f(x)+\frac{f(y)}{f(x)}+2y, \; x,y \in \mathbb{Q}^{+}.\]
2022 SEEMOUS, 2
Let $a, b, c \in \mathbb{R}$ be such that
$$a + b + c = a^2 + b^2 + c^2 = 1, \hspace{8px} a^3 + b^3 + c^3 \neq 1.$$
We say that a function $f$ is a [i]Palić function[/i] if $f: \mathbb{R} \rightarrow \mathbb{R}$, $f$ is continuous and satisfies
$$f(x) + f(y) + f(z) = f(ax + by + cz) + f(bx + cy + az) + f(cx + ay + bz)$$
for all $x, y, z \in \mathbb{R}.$
Prove that any Palić function is infinitely many times differentiable and find all Palić functions.
2022 Costa Rica - Final Round, 4
Maria was a brilliant mathematician who found the following property about her year of birth: if $f$ is a function defined in the set of natural numbers $N = \{0, 1, 2, 3, 4, 5,...\}$ such that $f(1) = 1335$ and $f(n+1) = f(n)-2n+43$ for all $n \in N$, then his year of birth is the maximum value that $f(n)$ can reach when $n$ takes values in $N$. Determine the year of birth of Mary.