This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2024 Taiwan TST Round 2, 3

Let $\mathbb{N}$ be the set of all positive integers. Find all functions $f\colon \mathbb{N}\to \mathbb{N}$ such that $mf(m)+(f(f(m))+n)^2$ divides $4m^4+n^2f(f(n))^2$ for all positive integers $m$ and $n$.

2020 Baltic Way, 4

Find all functions $f:\mathbb{R} \to \mathbb{R}$ so that \[f(f(x)+x+y) = f(x+y) + y f(y)\] for all real numbers $x, y$.

1977 IMO Longlists, 24

Determine all real functions $f(x)$ that are defined and continuous on the interval $(-1, 1)$ and that satisfy the functional equation \[f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} \qquad (x, y, x + y \in (-1, 1)).\]

2022 Korea Junior Math Olympiad, 4

Find all function $f:\mathbb{N} \longrightarrow \mathbb{N}$ such that forall positive integers $x$ and $y$, $\frac{f(x+y)-f(x)}{f(y)}$ is again a positive integer not exceeding $2022^{2022}$.

2020 Peru Cono Sur TST., P2

Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ that satisfy the conditions: $i) f(f(x)) = xf(x) - x^2 + 2,\forall x\in\mathbb{Z}$ $ii) f$ takes all integer values

2019 Baltic Way, 3

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $$f(xf(y)-y^2)=(y+1)f(x-y)$$ holds for all $x,y\in\mathbb{R}$.

2023 ISL, A6

For each integer $k\geq 2$, determine all infinite sequences of positive integers $a_1$, $a_2$, $\ldots$ for which there exists a polynomial $P$ of the form \[ P(x)=x^k+c_{k-1}x^{k-1}+\dots + c_1 x+c_0, \] where $c_0$, $c_1$, \dots, $c_{k-1}$ are non-negative integers, such that \[ P(a_n)=a_{n+1}a_{n+2}\cdots a_{n+k} \] for every integer $n\geq 1$.

2022 Azerbaijan BMO TST, A2

Find all functions $f : R \to R$ with $f (x + yf(x + y))= y^2 + f(x)f(y)$ for all $x, y \in R$.

1972 Dutch Mathematical Olympiad, 2

Prove that there exists exactly one function $ƒ$ which is defined for all $x \in R$, and for which holds: $\bullet$ $x \le y \Rightarrow f(x) \le f(y)$, for all $x, y \in R$, and $\bullet$ $f(f(x)) = x$, for all $x \in R$.

2000 Mongolian Mathematical Olympiad, Problem 4

Suppose that a function $f:\mathbb R\to\mathbb R$ satisfies the following conditions: (i) $\left|f(a)-f(b)\right|\le|a-b|$ for all $a,b\in\mathbb R$; (ii) $f(f(f(0)))=0$. Prove that $f(0)=0$.

2017 Junior Regional Olympiad - FBH, 1

It is given function $f(x)=3x-2$ $a)$ Find $g(x)$ if $f(2x-g(x))=-3(1+2m)x+34$ $b)$ Solve the equation: $g(x)=4(m-1)x-4(m+1)$, $m \in \mathbb{R}$

2016 Dutch IMO TST, 4

Find all funtions $f:\mathbb R\to\mathbb R$ such that: $$f(xy-1)+f(x)f(y)=2xy-1$$ for all $x,y\in \mathbb{R}$.

1963 Swedish Mathematical Competition., 4

Given the real number $k$, find all differentiable real-valued functions $f(x)$ defined on the reals such that $f(x+y) = f(x) + f(y) + f(kxy)$ for all $x, y$.

2024 Abelkonkurransen Finale, 2b

Find all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying \[xf(f(x)+y)=f(xy)+x^2\] for all $x,y \in \mathbb{R}$.

2023 Israel Olympic Revenge, P3

Find all (weakly) increasing $f\colon \mathbb{R}\to \mathbb{R}$ for which \[f(f(x)+y)=f(f(y)+x)\] holds for all $x, y\in \mathbb{R}$.

1993 Austrian-Polish Competition, 8

Determine all real polynomials $P(z)$ for which there exists a unique real polynomial $Q(x)$ satisfying the conditions $Q(0)= 0$, $x + Q(y + P(x))= y + Q(x + P(y))$ for all $x,y \in R$.

2000 Belarus Team Selection Test, 1.3

Does there exist a function $f : N\to N$ such that $f ( f (n-1)) = f (n+1)- f (n)$ for all $n \ge 2$?

2002 IMO Shortlist, 1

Find all functions $f$ from the reals to the reals such that \[f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)\] for all real $x,y$.

2024 Malaysian IMO Training Camp, 3

Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for all $x, y\in\mathbb{R}^+$, \[ \frac{f(x)}{y^2} - \frac{f(y)}{x^2} \le \left(\frac{1}{x}-\frac{1}{y}\right)^2\] ($\mathbb{R}^+$ denotes the set of positive real numbers.) [i](Proposed by Ivan Chan Guan Yu)[/i]

2010 Contests, 2

Find all polynomials $p(x)$ with real coeffcients such that \[p(a + b - 2c) + p(b + c - 2a) + p(c + a - 2b) = 3p(a - b) + 3p(b - c) + 3p(c - a)\] for all $a, b, c\in\mathbb{R}$. [i](2nd Benelux Mathematical Olympiad 2010, Problem 2)[/i]

1941 Putnam, B7

Do either (1) or (2): (1) Show that any solution $f(t)$ of the functional equation $$f(x+y)f(x-y)=f(x)^{2} +f(y)^{2} -1$$ for $x,y\in \mathbb{R}$ satisfies $$f''(t)= \pm c^{2} f(t)$$ for a constant $c$, assuming the existence and continuity of the second derivative. Deduce that $f(t)$ is one of the functions $$ \pm \cos ct, \;\;\; \pm \cosh ct.$$ (2) Let $(a_{i})_{i=1,...,n}$ and $(b_{i})_{i=1,...,n}$ be real numbers. Define an $(n+1)\times (n+1)$-matrix $A=(c_{ij})$ by $$ c_{i1}=1, \; \; c_{1j}= x^{j-1} \; \text{for} \; j\leq n,\; \; c_{1n+1}=p(x), \;\; c_{ij}=a_{i-1}^{j-1} \; \text{for}\; i>1, j\leq n,\;\; c_{in+1}=b_{i-1}\; \text{for}\; i>1.$$ The polynomial $p(x)$ is defined by the equation $\det A=0$. Let $f$ be a polynomial and replace $(b_{i})$ with $(f(b_{i}))$. Then $\det A=0$ defines another polynomial $q(x)$. Prove that $f(p(x))-q(x)$ is a multiple of $$\prod_{i=1}^{n} (x-a_{i}).$$

2020 Dutch BxMO TST, 3

Find all functions $f: R \to R$ that satisfy $$f (x^2y) + 2f (y^2) =(x^2 + f (y)) \cdot f (y)$$ for all $x, y \in R$

1996 IMO Shortlist, 7

Let $ f$ be a function from the set of real numbers $ \mathbb{R}$ into itself such for all $ x \in \mathbb{R},$ we have $ |f(x)| \leq 1$ and \[ f \left( x \plus{} \frac{13}{42} \right) \plus{} f(x) \equal{} f \left( x \plus{} \frac{1}{6} \right) \plus{} f \left( x \plus{} \frac{1}{7} \right).\] Prove that $ f$ is a periodic function (that is, there exists a non-zero real number $ c$ such $ f(x\plus{}c) \equal{} f(x)$ for all $ x \in \mathbb{R}$).

2015 Canada National Olympiad, 1

Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of positive integers. Find all functions $f$, defined on $\mathbb{N}$ and taking values in $\mathbb{N}$, such that $(n-1)^2< f(n)f(f(n)) < n^2+n$ for every positive integer $n$.

1988 IMO Longlists, 77

A function $ f$ defined on the positive integers (and taking positive integers values) is given by: $ \begin{matrix} f(1) \equal{} 1, f(3) \equal{} 3 \\ f(2 \cdot n) \equal{} f(n) \\ f(4 \cdot n \plus{} 1) \equal{} 2 \cdot f(2 \cdot n \plus{} 1) \minus{} f(n) \\ f(4 \cdot n \plus{} 3) \equal{} 3 \cdot f(2 \cdot n \plus{} 1) \minus{} 2 \cdot f(n), \end{matrix}$ for all positive integers $ n.$ Determine with proof the number of positive integers $ \leq 1988$ for which $ f(n) \equal{} n.$