Found problems: 1513
2024 Taiwan TST Round 2, 3
Let $\mathbb{N}$ be the set of all positive integers. Find all functions $f\colon \mathbb{N}\to \mathbb{N}$ such that $mf(m)+(f(f(m))+n)^2$ divides $4m^4+n^2f(f(n))^2$ for all positive integers $m$ and $n$.
2020 Baltic Way, 4
Find all functions $f:\mathbb{R} \to \mathbb{R}$ so that
\[f(f(x)+x+y) = f(x+y) + y f(y)\]
for all real numbers $x, y$.
1977 IMO Longlists, 24
Determine all real functions $f(x)$ that are defined and continuous on the interval $(-1, 1)$ and that satisfy the functional equation
\[f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} \qquad (x, y, x + y \in (-1, 1)).\]
2022 Korea Junior Math Olympiad, 4
Find all function $f:\mathbb{N} \longrightarrow \mathbb{N}$ such that
forall positive integers $x$ and $y$, $\frac{f(x+y)-f(x)}{f(y)}$ is again a positive integer not exceeding $2022^{2022}$.
2020 Peru Cono Sur TST., P2
Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ that satisfy the conditions:
$i) f(f(x)) = xf(x) - x^2 + 2,\forall x\in\mathbb{Z}$
$ii) f$ takes all integer values
2019 Baltic Way, 3
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that
$$f(xf(y)-y^2)=(y+1)f(x-y)$$
holds for all $x,y\in\mathbb{R}$.
2023 ISL, A6
For each integer $k\geq 2$, determine all infinite sequences of positive integers $a_1$, $a_2$, $\ldots$ for which there exists a polynomial $P$ of the form \[ P(x)=x^k+c_{k-1}x^{k-1}+\dots + c_1 x+c_0, \] where $c_0$, $c_1$, \dots, $c_{k-1}$ are non-negative integers, such that \[ P(a_n)=a_{n+1}a_{n+2}\cdots a_{n+k} \] for every integer $n\geq 1$.
2022 Azerbaijan BMO TST, A2
Find all functions $f : R \to R$ with $f (x + yf(x + y))= y^2 + f(x)f(y)$ for all $x, y \in R$.
1972 Dutch Mathematical Olympiad, 2
Prove that there exists exactly one function $ƒ$ which is defined for all $x \in R$, and for which holds:
$\bullet$ $x \le y \Rightarrow f(x) \le f(y)$, for all $x, y \in R$, and
$\bullet$ $f(f(x)) = x$, for all $x \in R$.
2000 Mongolian Mathematical Olympiad, Problem 4
Suppose that a function $f:\mathbb R\to\mathbb R$ satisfies the following conditions:
(i) $\left|f(a)-f(b)\right|\le|a-b|$ for all $a,b\in\mathbb R$;
(ii) $f(f(f(0)))=0$.
Prove that $f(0)=0$.
2017 Junior Regional Olympiad - FBH, 1
It is given function $f(x)=3x-2$
$a)$ Find $g(x)$ if $f(2x-g(x))=-3(1+2m)x+34$
$b)$ Solve the equation: $g(x)=4(m-1)x-4(m+1)$, $m \in \mathbb{R}$
2016 Dutch IMO TST, 4
Find all funtions $f:\mathbb R\to\mathbb R$ such that: $$f(xy-1)+f(x)f(y)=2xy-1$$ for all $x,y\in \mathbb{R}$.
1963 Swedish Mathematical Competition., 4
Given the real number $k$, find all differentiable real-valued functions $f(x)$ defined on the reals such that $f(x+y) = f(x) + f(y) + f(kxy)$ for all $x, y$.
2024 Abelkonkurransen Finale, 2b
Find all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying
\[xf(f(x)+y)=f(xy)+x^2\]
for all $x,y \in \mathbb{R}$.
2023 Israel Olympic Revenge, P3
Find all (weakly) increasing $f\colon \mathbb{R}\to \mathbb{R}$ for which
\[f(f(x)+y)=f(f(y)+x)\]
holds for all $x, y\in \mathbb{R}$.
1993 Austrian-Polish Competition, 8
Determine all real polynomials $P(z)$ for which there exists a unique real polynomial $Q(x)$ satisfying the conditions
$Q(0)= 0$, $x + Q(y + P(x))= y + Q(x + P(y))$ for all $x,y \in R$.
2000 Belarus Team Selection Test, 1.3
Does there exist a function $f : N\to N$ such that $f ( f (n-1)) = f (n+1)- f (n)$ for all $n \ge 2$?
2002 IMO Shortlist, 1
Find all functions $f$ from the reals to the reals such that
\[f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)\]
for all real $x,y$.
2024 Malaysian IMO Training Camp, 3
Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for all $x, y\in\mathbb{R}^+$,
\[ \frac{f(x)}{y^2} - \frac{f(y)}{x^2} \le \left(\frac{1}{x}-\frac{1}{y}\right)^2\]
($\mathbb{R}^+$ denotes the set of positive real numbers.)
[i](Proposed by Ivan Chan Guan Yu)[/i]
2010 Contests, 2
Find all polynomials $p(x)$ with real coeffcients such that
\[p(a + b - 2c) + p(b + c - 2a) + p(c + a - 2b) = 3p(a - b) + 3p(b - c) + 3p(c - a)\]
for all $a, b, c\in\mathbb{R}$.
[i](2nd Benelux Mathematical Olympiad 2010, Problem 2)[/i]
1941 Putnam, B7
Do either (1) or (2):
(1) Show that any solution $f(t)$ of the functional equation
$$f(x+y)f(x-y)=f(x)^{2} +f(y)^{2} -1$$
for $x,y\in \mathbb{R}$ satisfies
$$f''(t)= \pm c^{2} f(t)$$
for a constant $c$, assuming the existence and continuity of the second derivative.
Deduce that $f(t)$ is one of the functions
$$ \pm \cos ct, \;\;\; \pm \cosh ct.$$
(2) Let $(a_{i})_{i=1,...,n}$ and $(b_{i})_{i=1,...,n}$ be real numbers. Define an $(n+1)\times (n+1)$-matrix $A=(c_{ij})$ by
$$ c_{i1}=1, \; \; c_{1j}= x^{j-1} \; \text{for} \; j\leq n,\; \; c_{1n+1}=p(x), \;\; c_{ij}=a_{i-1}^{j-1} \; \text{for}\; i>1, j\leq n,\;\;
c_{in+1}=b_{i-1}\; \text{for}\; i>1.$$
The polynomial $p(x)$ is defined by the equation $\det A=0$. Let $f$ be a polynomial and replace $(b_{i})$ with $(f(b_{i}))$. Then $\det A=0$ defines another polynomial $q(x)$. Prove that $f(p(x))-q(x)$ is a multiple of
$$\prod_{i=1}^{n} (x-a_{i}).$$
2020 Dutch BxMO TST, 3
Find all functions $f: R \to R$ that satisfy
$$f (x^2y) + 2f (y^2) =(x^2 + f (y)) \cdot f (y)$$ for all $x, y \in R$
1996 IMO Shortlist, 7
Let $ f$ be a function from the set of real numbers $ \mathbb{R}$ into itself such for all $ x \in \mathbb{R},$ we have $ |f(x)| \leq 1$ and
\[ f \left( x \plus{} \frac{13}{42} \right) \plus{} f(x) \equal{} f \left( x \plus{} \frac{1}{6} \right) \plus{} f \left( x \plus{} \frac{1}{7} \right).\]
Prove that $ f$ is a periodic function (that is, there exists a non-zero real number $ c$ such $ f(x\plus{}c) \equal{} f(x)$ for all $ x \in \mathbb{R}$).
2015 Canada National Olympiad, 1
Let $\mathbb{N} = \{1, 2, 3, \ldots\}$ be the set of positive integers. Find all functions $f$, defined on $\mathbb{N}$ and taking values in $\mathbb{N}$, such that $(n-1)^2< f(n)f(f(n)) < n^2+n$ for every positive integer $n$.
1988 IMO Longlists, 77
A function $ f$ defined on the positive integers (and taking positive integers values) is given by:
$ \begin{matrix} f(1) \equal{} 1, f(3) \equal{} 3 \\
f(2 \cdot n) \equal{} f(n) \\
f(4 \cdot n \plus{} 1) \equal{} 2 \cdot f(2 \cdot n \plus{} 1) \minus{} f(n) \\
f(4 \cdot n \plus{} 3) \equal{} 3 \cdot f(2 \cdot n \plus{} 1) \minus{} 2 \cdot f(n), \end{matrix}$
for all positive integers $ n.$ Determine with proof the number of positive integers $ \leq 1988$ for which $ f(n) \equal{} n.$