This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 98

2024 Dutch IMO TST, 2

Find all functions $f:\mathbb{R}_{\ge 0} \to \mathbb{R}$ with \[2x^3zf(z)+yf(y) \ge 3yz^2f(x)\] for all $x,y,z \in \mathbb{R}_{\ge 0}$.

2022 German National Olympiad, 6

Consider functions $f$ satisfying the following four conditions: (1) $f$ is real-valued and defined for all real numbers. (2) For any two real numbers $x$ and $y$ we have $f(xy)=f(x)f(y)$. (3) For any two real numbers $x$ and $y$ we have $f(x+y) \le 2(f(x)+f(y))$. (4) We have $f(2)=4$. Prove that: a) There is a function $f$ with $f(3)=9$ satisfying the four conditions. b) For any function $f$ satisfying the four conditions, we have $f(3) \le 9$.

2021 Balkan MO Shortlist, A4

Let $f, g$ be functions from the positive integers to the integers. Vlad the impala is jumping around the integer grid. His initial position is $x_0 = (0, 0)$, and for every $n \ge 1$, his jump is $x_n - x_{n - 1} = (\pm f(n), \pm g(n))$ or $(\pm g(n), \pm f(n)),$ with eight possibilities in total. Is it always possible that Vlad can choose his jumps to return to his initial location $(0, 0)$ infinitely many times when (a) $f, g$ are polynomials with integer coefficients? (b) $f, g$ are any pair of functions from the positive integers to the integers?

2009 Peru IMO TST, 6

Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions: (i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$; (ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$. Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list] [i]Proposed by Hans Zantema, Netherlands[/i]

2024 Indonesia TST, 2

Let $\mathbb R_{>0}$ be the set of positive real numbers. Determine all functions $f \colon \mathbb R_{>0} \to \mathbb R_{>0}$ such that \[x \big(f(x) + f(y)\big) \geqslant \big(f(f(x)) + y\big) f(y)\] for every $x, y \in \mathbb R_{>0}$.

1972 IMO Longlists, 7

$f$ and $g$ are real-valued functions defined on the real line. For all $x$ and $y, f(x+y)+f(x-y)=2f(x)g(y)$. $f$ is not identically zero and $|f(x)|\le1$ for all $x$. Prove that $|g(x)|\le1$ for all $x$.

2024 Romania Team Selection Tests, P4

Let $\mathbb R_{>0}$ be the set of positive real numbers. Determine all functions $f \colon \mathbb R_{>0} \to \mathbb R_{>0}$ such that \[x \big(f(x) + f(y)\big) \geqslant \big(f(f(x)) + y\big) f(y)\] for every $x, y \in \mathbb R_{>0}$.

1999 Korea - Final Round, 2

Suppose $f(x)$ is a function satisfying $\left | f(m+n)-f(m) \right | \leq \frac{n}{m}$ for all positive integers $m$,$n$. Show that for all positive integers $k$: \[\sum_{i=1}^{k}\left |f(2^k)-f(2^i) \right |\leq \frac{k(k-1)}{2}\].

2011 IMO Shortlist, 6

Let $f : \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies \[f(x + y) \leq yf(x) + f(f(x))\] for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \leq 0$. [i]Proposed by Igor Voronovich, Belarus[/i]

2022 IMO Shortlist, A3

Let $\mathbb{R}^+$ denote the set of positive real numbers. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that for each $x \in \mathbb{R}^+$, there is exactly one $y \in \mathbb{R}^+$ satisfying $$xf(y)+yf(x) \leq 2$$

2021 Middle European Mathematical Olympiad, 1

Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that the inequality \[ f(x^2)-f(y^2) \le (f(x)+y)(x-f(y)) \] holds for all real numbers $x$ and $y$.

2019 Dutch IMO TST, 3

Find all functions $f : Z \to Z$ satisfying the following two conditions: (i) for all integers $x$ we have $f(f(x)) = x$, (ii) for all integers $x$ and y such that $x + y$ is odd, we have $f(x) + f(y) \ge x + y$.

2015 Costa Rica - Final Round, 5

Let $f: N^+ \to N^+$ be a function that satisfies that $$kf(n) \le f (kn) \le kf(n)+ k- 1, \,\, \forall k,n \in N^+$$ Prove that $$f(a) + f(b) \le f (a + b) \le f(a) + f(b) + 1, \,\, \forall a, b \in N^+$$

2023 ISL, A4

Let $\mathbb R_{>0}$ be the set of positive real numbers. Determine all functions $f \colon \mathbb R_{>0} \to \mathbb R_{>0}$ such that \[x \big(f(x) + f(y)\big) \geqslant \big(f(f(x)) + y\big) f(y)\] for every $x, y \in \mathbb R_{>0}$.

2008 Switzerland - Final Round, 2

Determine all functions $f : R^+ \to R^+$, so that for all $x, y > 0$: $$f(xy) \le \frac{xf(y) + yf(x)}{2}$$

2010 Belarus Team Selection Test, 5.3

Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\] [i]Proposed by Igor Voronovich, Belarus[/i]

2018 Dutch IMO TST, 2

Find all functions $f : R \to R$ such that $f(x^2)-f(y^2) \le (f(x)+y) (x-f(y))$ for all $x, y \in R$.

2019 Swedish Mathematical Competition, 5

Let $f$ be a function that is defined for all positive integers and whose values are positive integers. For $f$ it also holds that $f (n + 1)> f (n)$ and $f (f (n)) = 3n$, for each positive integer $n$. Calculate $f (2019)$.

2008 Germany Team Selection Test, 1

Consider those functions $ f: \mathbb{N} \mapsto \mathbb{N}$ which satisfy the condition \[ f(m \plus{} n) \geq f(m) \plus{} f(f(n)) \minus{} 1 \] for all $ m,n \in \mathbb{N}.$ Find all possible values of $ f(2007).$ [i]Author: Nikolai Nikolov, Bulgaria[/i]

2009 Germany Team Selection Test, 2

Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions: (i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$; (ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$. Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list] [i]Proposed by Hans Zantema, Netherlands[/i]

2019 Regional Olympiad of Mexico Center Zone, 2

Find all functions $ f: \mathbb {R} \rightarrow \mathbb {R} $ such that $ f (x + y) \le f (xy) $ for every pair of real $ x $, $ y$.

2019 Saudi Arabia IMO TST, 1

Find all functions $f : Z^+ \to Z^+$ such that $n^3 - n^2 \le f(n) \cdot (f(f(n)))^2 \le n^3 + n^2$ for every $n$ in positive integers

2000 Nordic, 4

The real-valued function $f$ is defined for $0 \le x \le 1, f(0) = 0, f(1) = 1$, and $\frac{1}{2} \le \frac{ f(z) - f(y)}{f(y) - f(x)} \le 2$ for all $0 \le x < y < z \le 1$ with $z - y = y -x$. Prove that $\frac{1}{7} \le f (\frac{1}{3} ) \le \frac{4}{7}$.

2010 Germany Team Selection Test, 3

Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\] [i]Proposed by Igor Voronovich, Belarus[/i]

1972 IMO Shortlist, 1

$f$ and $g$ are real-valued functions defined on the real line. For all $x$ and $y, f(x+y)+f(x-y)=2f(x)g(y)$. $f$ is not identically zero and $|f(x)|\le1$ for all $x$. Prove that $|g(x)|\le1$ for all $x$.