This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 622

1988 ITAMO, 2

In a basketball tournament any two of the $n$ teams $S_1,S_2,...,S_n$ play one match (no draws). Denote by $v_i$ and $p_i$ the number of victories and defeats of team $S_i$ ($i = 1,2,...,n$), respectively. Prove that $v^2_1 +v^2_2 +...+v^2_n = p^2_1 +p^2_2 +...+p^2_n$

1991 All Soviet Union Mathematical Olympiad, 538

A lottery ticket has $50$ cells into which one must put a permutation of $1, 2, 3, ... , 50$. Any ticket with at least one cell matching the winning permutation wins a prize. How many tickets are needed to be sure of winning a prize?

2022 Brazil National Olympiad, 1

A single player game has the following rules: initially, there are $10$ piles of stones with $1,2,...,10$ stones, respectively. A movement consists on making one of the following operations: [b]i)[/b] to choose $2$ piles, both of them with at least $2$ stones, combine them and then add $2$ stones to the new pile; [b]ii)[/b] to choose a pile with at least $4$ stones, remove $2$ stones from it, and then split it into two piles with amount of piles to be chosen by the player. The game continues until is not possible to make an operation. Show that the number of piles with one stone in the end of the game is always the same, no matter how the movements are made.

2017 Puerto Rico Team Selection Test, 2

Ana and Beta play a turn-based game on a $m \times n$ board. Ana begins. At the beginning, there is a stone in the lower left square and the objective is to move it to the upper right corner. A move consists of the player moving the stone to the right or up as many squares as the player wants. Find all the values ​​of $(m, n)$ for which Ana can guarantee victory.

Kvant 2020, M2595

Kolya and Dima play a game on an $8\times 8$ board, making moves in turn. During his turn, Kolya must put one cross in any empty cell (i.e., in a cell in which a cross has not yet been drawn and which has not yet been covered with a domino). Dima must cover two adjacent cells with a domino (which are not yet covered with other dominoes), in which there are an even number of crosses in total (0 or 2). The one who can't make a move loses. Which of does the player have a winning strategy, if [list=a] [*]Dima makes the first move? [*]Kolya makes the first move? [/list] [i]Proposed by M. Didin[/i]

1990 IMO Longlists, 19

Given an initial integer $ n_0 > 1$, two players, $ {\mathcal A}$ and $ {\mathcal B}$, choose integers $ n_1$, $ n_2$, $ n_3$, $ \ldots$ alternately according to the following rules : [b]I.)[/b] Knowing $ n_{2k}$, $ {\mathcal A}$ chooses any integer $ n_{2k \plus{} 1}$ such that \[ n_{2k} \leq n_{2k \plus{} 1} \leq n_{2k}^2. \] [b]II.)[/b] Knowing $ n_{2k \plus{} 1}$, $ {\mathcal B}$ chooses any integer $ n_{2k \plus{} 2}$ such that \[ \frac {n_{2k \plus{} 1}}{n_{2k \plus{} 2}} \] is a prime raised to a positive integer power. Player $ {\mathcal A}$ wins the game by choosing the number 1990; player $ {\mathcal B}$ wins by choosing the number 1. For which $ n_0$ does : [b]a.)[/b] $ {\mathcal A}$ have a winning strategy? [b]b.)[/b] $ {\mathcal B}$ have a winning strategy? [b]c.)[/b] Neither player have a winning strategy?

2013 Czech And Slovak Olympiad IIIA, 4

On the board is written in decimal the integer positive number $N$. If it is not a single digit number, wipe its last digit $c$ and replace the number $m$ that remains on the board with a number $m -3c$. (For example, if $N = 1,204$ on the board, $120 - 3 \cdot 4 = 108$.) Find all the natural numbers $N$, by repeating the adjustment described eventually we get the number $0$.

2005 Colombia Team Selection Test, 6

$A$ and $B$ play a game, given an integer $N$, $A$ writes down $1$ first, then every player sees the last number written and if it is $n$ then in his turn he writes $n+1$ or $2n$, but his number cannot be bigger than $N$. The player who writes $N$ wins. For which values of $N$ does $B$ win? [i]Proposed by A. Slinko & S. Marshall, New Zealand[/i]

2002 Abels Math Contest (Norwegian MO), 4

An integer is given $N> 1$. Arne and Britt play the following game: (1) Arne says a positive integer $A$. (2) Britt says an integer $B> 1$ that is either a divisor of $A$ or a multiple of $A$. ($A$ itself is a possibility.) (3) Arne says a new number $A$ that is either $B - 1, B$ or $B + 1$. The game continues by repeating steps 2 and 3. Britt wins if she is okay with being told the number $N$ before the $50$th has been said. Otherwise, Arne wins. a) Show that Arne has a winning strategy if $N = 10$. b) Show that Britt has a winning strategy if $N = 24$. c) For which $N$ does Britt have a winning strategy?

1987 Tournament Of Towns, (158) 2

In the centre of a square swimming pool is a boy, while his teacher (who cannot swim) is standing at one corner of the pool. The teacher can run three times as fast as the boy can swim, but the boy can run faster than the teacher . Can the boy escape from the teacher?

2017-IMOC, N2

On the blackboard, there are $K$ blanks. Alice decides $N$ values of blanks $(0-9)$ and then Bob determines the remaining digits. Find the largest possible integer $N$ such that Bob can guarantee to make the final number isn't a power of an integer.

1995 Bundeswettbewerb Mathematik, 1

A game is played with two heaps of $p$ and $q$ stones. Two players alternate playing, with $A$ starting. A player in turn takes away one heap and divides the other heap into two smaller ones. A player who cannot perform a legal move loses the game. For which values of $p$ and $q$ can $A$ force a victory?

Russian TST 2014, P3

Players $A$ and $B$ play a "paintful" game on the real line. Player $A$ has a pot of paint with four units of black ink. A quantity $p$ of this ink suffices to blacken a (closed) real interval of length $p$. In every round, player $A$ picks some positive integer $m$ and provides $1/2^m $ units of ink from the pot. Player $B$ then picks an integer $k$ and blackens the interval from $k/2^m$ to $(k+1)/2^m$ (some parts of this interval may have been blackened before). The goal of player $A$ is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened. Decide whether there exists a strategy for player $A$ to win in a finite number of moves.

2014 Tournament of Towns., 4

The King called two wizards. He ordered First Wizard to write down $100$ positive integers (not necessarily distinct) on cards without revealing them to Second Wizard. Second Wizard must correctly determine all these integers, otherwise both wizards will lose their heads. First Wizard is allowed to provide Second Wizard with a list of distinct integers, each of which is either one of the integers on the cards or a sum of some of these integers. He is not allowed to tell which integers are on the cards and which integers are their sums. If Second Wizard correctly determines all $100$ integers the King tears as many hairs from each wizard's beard as the number of integers in the list given to Second Wizard. What is the minimal number of hairs each wizard should sacri ce to stay alive?

2014 Taiwan TST Round 3, 6

Players $A$ and $B$ play a "paintful" game on the real line. Player $A$ has a pot of paint with four units of black ink. A quantity $p$ of this ink suffices to blacken a (closed) real interval of length $p$. In every round, player $A$ picks some positive integer $m$ and provides $1/2^m $ units of ink from the pot. Player $B$ then picks an integer $k$ and blackens the interval from $k/2^m$ to $(k+1)/2^m$ (some parts of this interval may have been blackened before). The goal of player $A$ is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened. Decide whether there exists a strategy for player $A$ to win in a finite number of moves.

1999 All-Russian Olympiad Regional Round, 8.7

The box contains a complete set of dominoes. Two players take turns choosing one dice from the box and placing them on the table, applying them to the already laid out chain on either of the two sides according to the rules of domino. The one who cannot make his next move loses. Who will win if they both played correctly?

2008 Abels Math Contest (Norwegian MO) Final, 2b

A and B play a game on a square board consisting of $n \times n$ white tiles, where $n \ge 2$. A moves first, and the players alternate taking turns. A move consists of picking a square consisting of $2\times 2$ or $3\times 3$ white tiles and colouring all these tiles black. The first player who cannot find any such squares has lost. Show that A can always win the game if A plays the game right.

2016 Federal Competition For Advanced Students, P2, 5

Consider a board consisting of $n\times n$ unit squares where $n \ge 2$. Two cells are called neighbors if they share a horizontal or vertical border. In the beginning, all cells together contain $k$ tokens. Each cell may contain one or several tokens or none. In each turn, choose one of the cells that contains at least one token for each of its neighbors and move one of those to each of its neighbors. The game ends if no such cell exists. (a) Find the minimal $k$ such that the game does not end for any starting configuration and choice of cells during the game. (b) Find the maximal $k$ such that the game ends for any starting configuration and choice of cells during the game. Proposed by Theresia Eisenkölbl

1998 Brazil National Olympiad, 1

Two players play a game as follows. The first player chooses two non-zero integers A and B. The second player forms a quadratic with A, B and 1998 as coefficients (in any order). The first player wins iff the equation has two distinct rational roots. Show that the first player can always win.

2022 Kyiv City MO Round 1, Problem 5

There is a black token in the lower-left corner of a board $m \times n$ ($m, n \ge 3$), and there are white tokens in the lower-right and upper-left corners of this board. Petryk and Vasyl are playing a game, with Petryk playing with a black token and Vasyl with white tokens. Petryk moves first. In his move, a player can perform the following operation at most two times: choose any his token and move it to any adjacent by side cell, with one restriction: you can't move a token to a cell where at some point was one of the opponents' tokens. Vasyl wins if at some point of the game white tokens are in the same cell. For which values of $m, n$ can Petryk prevent him from winning? [i](Proposed by Arsenii Nikolaiev)[/i]

2024 All-Russian Olympiad, 3

Yuri is looking at the great Mayan table. The table has $200$ columns and $2^{200}$ rows. Yuri knows that each cell of the table depicts the sun or the moon, and any two rows are different (i.e. differ in at least one column). Each cell of the table is covered with a sheet. The wind has blown aways exactly two sheets from each row. Could it happen that now Yuri can find out for at least $10000$ rows what is depicted in each of them (in each of the columns)? [i]Proposed by I. Bogdanov, K. Knop[/i]

2013 Cuba MO, 5

Three players $A, B$ and $C$ take turns taking stones from a pile of $N$ stones. They play in the order $A$, $B$, $C$, $A$, $B$, $C$, $....$, $A$ starts the game and the one who takes the last stone loses. Players $A$ and $C$ They form a team against $B$, they agree on a strategy joint. $B$ can take $1, 2, 3, 4$ or $5$ stones on each move, while that $A$ and $C$ can each draw $1, 2$ or $3$ stones in each turn. Determine for which values of $N$ have winning strategies $A$ and $C$ , and for what values the winning strategy is $B$'s.

2022 Austrian MO National Competition, 3

Lisa writes a positive whole number in the decimal system on the blackboard and now makes in each turn the following: The last digit is deleted from the number on the board and then the remaining shorter number (or 0 if the number was one digit) becomes four times the number deleted number added. The number on the board is now replaced by the result of this calculation. Lisa repeats this until she gets a number for the first time was on the board. (a) Show that the sequence of moves always ends. (b) If Lisa begins with the number $53^{2022} - 1$, what is the last number on the board? Example: If Lisa starts with the number $2022$, she gets $202 + 4\cdot 2 = 210$ in the first move and overall the result $$2022 \to 210 \to 21 \to 6 \to 24 \to 18 \to 33 \to 15 \to 21$$. Since Lisa gets $21$ for the second time, the turn order ends. [i](Stephan Pfannerer)[/i]

1974 IMO Longlists, 40

Three players $A,B$ and $C$ play a game with three cards and on each of these $3$ cards it is written a positive integer, all $3$ numbers are different. A game consists of shuffling the cards, giving each player a card and each player is attributed a number of points equal to the number written on the card and then they give the cards back. After a number $(\geq 2)$ of games we find out that A has $20$ points, $B$ has $10$ points and $C$ has $9$ points. We also know that in the last game B had the card with the biggest number. Who had in the first game the card with the second value (this means the middle card concerning its value).

2001 Mongolian Mathematical Olympiad, Problem 6

In a tennis tournament, any two of the $n$ participants played a match (the winner of a match gets $1$ point, the loser gets $0$). The scores after the tournament were $r_1\le r_2\le\ldots\le r_n$. A match between two players is called wrong if after it the winner has a score less than or equal to that of the loser. Consider the set $I=\{i|r_1\ge i\}$. Prove that the number of wrong matches is not less than $\sum_{i\in I}(r_i-i+1)$, and show that this value is realizable