Found problems: 97
2001 Saint Petersburg Mathematical Olympiad, 9.4
Let $a,b,c\in\mathbb{Z^{+}}$ such that
$$(a^2-1, b^2-1, c^2-1)=1$$
Prove that
$$(ab+c, bc+a, ca+b)=(a,b,c)$$
(As usual, $(x,y,z)$ means the greatest common divisor of numbers $x,y,z$)
[I]Proposed by A. Golovanov[/i]
2016 Dutch Mathematical Olympiad, 3
Find all possible triples $(a, b, c)$ of positive integers with the following properties:
• $gcd(a, b) = gcd(a, c) = gcd(b, c) = 1$,
• $a$ is a divisor of $a + b + c$,
• $b$ is a divisor of $a + b + c$,
• $c$ is a divisor of $a + b + c$.
(Here $gcd(x,y)$ is the greatest common divisor of $x$ and $y$.)
2016 Latvia Baltic Way TST, 16
What is the largest possible value of the expression $$gcd \,\,\, (n^2 + 3, (n + 1)^2 + 3 )$$ for naturals $n$?
[hide]original wording]Kāda ir izteiksmes LKD (n2 + 3, (n + 1)2 + 3) lielākā iespējamā vērtība naturāliem n? [/hide]
2004 Cuba MO, 4
Determine all pairs of natural numbers $ (x, y)$ for which it holds that $$x^2 = 4y + 3gcd (x, y).$$
1983 Polish MO Finals, 4
Prove that if natural numbers $a,b,c,d$ satisfy the equality $ab = cd$, then $\frac{gcd(a,c)gcd(a,d)}{gcd(a,b,c,d)}= a$
2010 Estonia Team Selection Test, 1
For arbitrary positive integers $a, b$, denote $a @ b =\frac{a-b}{gcd(a,b)}$
Let $n$ be a positive integer. Prove that the following conditions are equivalent:
(i) $gcd(n, n @ m) = 1$ for every positive integer $m < n$,
(ii) $n = p^k$ where $p$ is a prime number and $k$ is a non-negative integer.
2000 Korea Junior Math Olympiad, 1
For arbitrary natural number $a$, show that $\gcd(a^3+1, a^7+1)=a+1$.
2013 Switzerland - Final Round, 1
Find all triples $(a, b, c)$ of natural numbers such that the sets
$$\{ gcd (a, b), gcd(b, c), gcd(c, a), lcm (a, b), lcm (b, c), lcm (c, a)\}$$ and
$$\{2, 3, 5, 30, 60\}$$
are the same.
Remark: For example, the sets $\{1, 2013\}$ and $\{1, 1, 2013\}$ are equal.
1966 Dutch Mathematical Olympiad, 2
For all $n$, $t_{n+1} = 2(t_n)^2 - 1$. Prove that gcd $(t_n,t_m) = 1$ if $n \ne m$.
2015 Czech-Polish-Slovak Junior Match, 4
Determine all such pairs pf positive integers $(a, b)$ such that $a + b + (gcd (a, b))^ 2 = lcm (a, b) = 2 \cdot lcm(a -1, b)$, where $lcm (a, b)$ denotes the smallest common multiple, and $gcd (a, b)$ denotes the greatest common divisor of numbers $a, b$.
2025 Kosovo National Mathematical Olympiad`, P4
Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ for which these two conditions hold simultaneously
(i) For all $m,n \in \mathbb{N}$ we have:
$$ \frac{f(mn)}{\gcd(m,n)} = \frac{f(m)f(n)}{f(\gcd(m,n))};$$
(ii) For all prime numbers $p$, there exists a prime number $q$ such that $f(p^{2025})=q^{2025}$.
2015 Romania Team Selection Tests, 1
Let $a$ be an integer and $n$ a positive integer . Show that the sum :
$$\sum_{k=1}^{n} a^{(k,n)}$$ is divisible by $n$ , where $(x,y)$ is the greatest common divisor of the numbers $x$ and $y$ .
2018 Saudi Arabia GMO TST, 1
Let $n$ be an odd positive integer with $n > 1$ and let $a_1, a_2,... , a_n$ be positive integers such that gcd $(a_1, a_2,... , a_n) = 1$. Let $d$ = gcd $(a_1^n + a_1\cdot a_2 \cdot \cdot \cdot a_n, a_2^n + a_1\cdot a_2 \cdot \cdot \cdot a_n, ... , a_n^n + a_1\cdot a_2 \cdot \cdot \cdot a_n)$. Show that the possible values of $d$ are $d = 1, d = 2$
2017 Costa Rica - Final Round, 2
Determine the greatest common divisor of the numbers:
$$5^5-5, 7^7-7, 9^9-9 ,..., 2017^{2017}-2017,$$
2019 Centers of Excellency of Suceava, 2
Let $ \left( s_n \right)_{n\ge 1 } $ be a sequence with $ s_1 $ and defined recursively as $ s_{n+1}=s_n^2-s_n+1. $
Prove that any two terms of this sequence are coprime.
[i]Dan Nedeianu[/i]
2018 Singapore Junior Math Olympiad, 3
One hundred balls labelled $1$ to $100$ are to be put into two identical boxes so that each box contains at least one ball and the greatest common divisor of the product of the labels of all the balls in one box and the product of the labels of all the balls in the other box is $1$. Determine the number of ways that this can be done.
2016 IFYM, Sozopol, 7
We are given a non-infinite sequence $a_1,a_2…a_n$ of natural numbers. While it is possible, on each turn are chosen two arbitrary indexes $i<j$ such that $a_i \nmid a_j$, and then $a_i$ and $a_j$ are changed with their $gcd$ and $lcm$. Prove that this process is non-infinite and the created sequence doesn’t depend on the made choices.
2019 Dutch IMO TST, 3
Let $n$ be a positive integer. Determine the maximum value of $gcd(a, b) + gcd(b, c) + gcd(c, a)$ for positive integers $a, b, c$ such that $a + b + c = 5n$.
2008 Indonesia TST, 3
Let $n$ be an arbitrary positive integer.
(a) For every positive integers $a$ and $b$, show that $gcd(n^a + 1, n^b + 1) \le n^{gcd(a,b)} + 1$.
(b) Show that there exist infinitely many composite pairs ($a, b)$, such that each of them is not a multiply of the other number and equality holds in (a).
2023 Regional Competition For Advanced Students, 4
Determine all pairs $(x, y)$ of positive integers such that for $d = gcd(x, y)$ the equation $$xyd = x + y + d^2$$
holds.
[i](Walther Janous)[/i]
2008 Indonesia TST, 3
Let $n$ be an arbitrary positive integer.
(a) For every positive integers $a$ and $b$, show that $gcd(n^a + 1, n^b + 1) \le n^{gcd(a,b)} + 1$.
(b) Show that there exist infinitely many composite pairs ($a, b)$, such that each of them is not a multiply of the other number and equality holds in (a).
1999 Swedish Mathematical Competition, 6
$S$ is any sequence of at least $3$ positive integers. A move is to take any $a, b$ in the sequence such that neither divides the other and replace them by gcd $(a,b)$ and lcm $(a,b)$. Show that only finitely many moves are possible and that the final result is independent of the moves made, except possibly for order.
2025 Alborz Mathematical Olympiad, P3
For every positive integer \( n \), do there exist pairwise distinct positive integers \( a_1, a_2, \dots, a_n \) that satisfy the following condition?
For every \( 3 \leq m \leq n \), there exists an \( i \leq m-2 \) such that:
$$
a_m = a_{\gcd(m-1, i)} + \gcd(a_{m-1}, a_i).
$$
Proposed by Alireza Jannati
2024 Kyiv City MO Round 2, Problem 2
You are given a positive integer $n$. What is the largest possible number of numbers that can be chosen from the set
$\{1, 2, \ldots, 2n\}$ so that there are no two chosen numbers $x > y$ for which $x - y = (x, y)$?
Here $(x, y)$ denotes the greatest common divisor of $x, y$.
[i]Proposed by Anton Trygub[/i]
2004 Thailand Mathematical Olympiad, 14
Compute gcd$(5^{2547} - 1, 5^{2004} - 1)$.