This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1987 Bundeswettbewerb Mathematik, 4

Place the integers $1,2 , \ldots, n^{3}$ in the cells of a $n\times n \times n$ cube such that every number appears once. For any possible enumeration, write down the maximal difference between any two adjacent cells (adjacent means having a common vertex). What is the minimal number noted down?

1977 Bundeswettbewerb Mathematik, 3

Show that there are infinitely many positive integers $a$ that cannot be written as $a = a_{1}^{6}+ a_{2}^{6} + \ldots + a_{7}^{6},$ where the $a_i$ are positive integers. State and prove a generalization.