This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 16

2003 Putnam, 6

For a set $S$ of nonnegative integers, let $r_S(n)$ denote the number of ordered pairs $(s_1, s_2)$ such that $s_1 \in S$, $s_2 \in S$, $s_1 \neq s_2$, and $s_1 + s_2 = n$. Is it possible to partition the nonnegative integers into two sets $A$ and $B$ in such a way that $r_A(n) = r_B(n)$ for all $n$?

2017 China Team Selection Test, 1

Prove that :$$\sum_{k=0}^{58}C_{2017+k}^{58-k}C_{2075-k}^{k}=\sum_{p=0}^{29}C_{4091-2p}^{58-2p}$$

2015 Postal Coaching, Problem 2

Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial \[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n. \]

2018 BMT Spring, 10

Consider a $2 \times n$ grid where each cell is either black or white, which we attempt to tile with $2 \times 1$ black or white tiles such that tiles have to match the colors of the cells they cover. We first randomly select a random positive integer $N$ where $N$ takes the value $n$ with probability $\frac{1}{2^n}$. We then take a $2 \times N$ grid and randomly color each cell black or white independently with equal probability. Compute the probability the resulting grid has a valid tiling.

2000 Dutch Mathematical Olympiad, 2

Three boxes contain 600 balls each. The first box contains 600 identical red balls, the second box contains 600 identical white balls and the third box contains 600 identical blue balls. From these three boxes, 900 balls are chosen. In how many ways can the balls be chosen? For example, one can choose 250 red balls, 187 white balls and 463 balls, or one can choose 360 red balls and 540 blue balls.

2016 Canadian Mathematical Olympiad Qualification, 8

Let $n \geq 3$ be a positive integer. A [i]chipped $n$-board[/i] is a $2 \times n$ checkerboard with the bottom left square removed. Lino wants to tile a chipped $n$-board and is allowed to use the following types of tiles: [list] [*] Type 1: any $1 \times k$ board where $1 \leq k \leq n$ [*] Type 2: any chipped $k$-board where $1 \leq k \leq n$ that must cover the left-most tile of the $2 \times n$ checkerboard. [/list] Two tilings $T_1$ and $T_2$ are considered the same if there is a set of consecutive Type 1 tiles in both rows of $T_1$ that can be vertically swapped to obtain the tiling $T_2$. For example, the following three tilings of a chipped $7$-board are the same: [img]http://i.imgur.com/8QaSgc0.png[/img] For any positive integer $n$ and any positive integer $1 \leq m \leq 2n - 1$, let $c_{m,n}$ be the number of distinct tilings of a chipped $n$-board using exactly $m$ tiles (any combination of tile types may be used), and define the polynomial $$P_n(x) = \sum^{2n-1}_{m=1} c_{m,n}x^m.$$ Find, with justification, polynomials $f(x)$ and $g(x)$ such that $$P_n(x) = f(x)P_{n-1}(x) + g(x)P_{n-2}(x)$$ for all $n \geq 3$.

1978 IMO Longlists, 2

If \[f(x) = (x + 2x^2 +\cdots+ nx^n)^2 = a_2x^2 + a_3x^3 + \cdots+ a_{2n}x^{2n},\] prove that \[a_{n+1} + a_{n+2} + \cdots + a_{2n} =\dbinom{n + 1}{2}\frac{5n^2 + 5n + 2}{12}\]

2023 Brazil Undergrad MO, 5

A drunken horse moves on an infinite board whose squares are numbered in pairs $(a, b) \in \mathbb{Z}^2$. In each movement, the 8 possibilities $$(a, b) \rightarrow (a \pm 1, b \pm 2),$$ $$(a, b) \rightarrow (a \pm 2, b \pm 1)$$ are equally likely. Knowing that the knight starts at $(0, 0)$, calculate the probability that, after $2023$ moves, it is in a square $(a, b)$ with $a \equiv 4 \pmod 8$ and $b \equiv 5 \pmod 8$.

1967 Putnam, A2

Define $S_0$ to be $1.$ For $n \geq 1 $, let $S_n $ be the number of $n\times n $ matrices whose elements are nonnegative integers with the property that $a_{ij}=a_{ji}$ (for $i,j=1,2,\ldots, n$) and where $\sum_{i=1}^{n} a_{ij}=1$ (for $j=1,2,\ldots, n$). Prove that a) $S_{n+1}=S_{n} +nS_{n-1}.$ b) $\sum_{n=0}^{\infty} S_{n} \frac{x^{n}}{n!} =\exp \left(x+\frac{x^{2}}{2}\right).$

1988 IMO Shortlist, 2

Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial \[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n. \]

2024 SG Originals, Q4

In a new edition of QoTD duels, $n \ge 2$ ranked contestants (numbered 1 to $n$) play a round robin tournament (i.e. each pair of contestants compete against each other exactly once); no draws are possible. Define an upset to be a pair $(i, j)$ where$ i > j$ and contestant $i$ wins against contestant $j$. At the end of the tournament, contestant $i$ has $s_i$ wins for each $1 \le i \le n$. The result of the tournament is defined as the $n$-tuple $(s_1, s_2, \cdots , s_n)$. An $n$-tuple $S$ is called interesting if, among the distinct tournaments that produce $S$ as a result, the number of tournaments with an odd number of upsets is not equal to the number of tournaments with an even number of upsets. Find the number of interesting $n$-tuples in terms of $n$. [i](Two tournaments are considered distinct if the outcome of some match differs.)[/i]

2019 IMC, 4

Let $(n+3)a_{n+2}=(6n+9)a_{n+1}-na_n$ and $a_0=1$ and $a_1=2$ prove that all the terms of the sequence are integers

2022 IMC, 3

Let $p$ be a prime number. A flea is staying at point $0$ of the real line. At each minute, the flea has three possibilities: to stay at its position, or to move by $1$ to the left or to the right. After $p-1$ minutes, it wants to be at $0$ again. Denote by $f(p)$ the number of its strategies to do this (for example, $f(3) = 3$: it may either stay at $0$ for the entire time, or go to the left and then to the right, or go to the right and then to the left). Find $f(p)$ modulo $p$.

2017 China Team Selection Test, 1

Prove that :$$\sum_{k=0}^{58}C_{2017+k}^{58-k}C_{2075-k}^{k}=\sum_{p=0}^{29}C_{4091-2p}^{58-2p}$$

1988 IMO Longlists, 3

Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial \[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n. \]

2002 IMO Shortlist, 5

Let $m,n\geq2$ be positive integers, and let $a_1,a_2,\ldots ,a_n$ be integers, none of which is a multiple of $m^{n-1}$. Show that there exist integers $e_1,e_2,\ldots,e_n$, not all zero, with $\left|{\,e}_i\,\right|<m$ for all $i$, such that $e_1a_1+e_2a_2+\,\ldots\,+e_na_n$ is a multiple of $m^n$.