This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2011 IMO, 2

Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A [i]windmill[/i] is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the [i]pivot[/i] $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely. Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times. [i]Proposed by Geoffrey Smith, United Kingdom[/i]

2011 IMO Shortlist, 3

Let $\mathcal{S}$ be a finite set of at least two points in the plane. Assume that no three points of $\mathcal S$ are collinear. A [i]windmill[/i] is a process that starts with a line $\ell$ going through a single point $P \in \mathcal S$. The line rotates clockwise about the [i]pivot[/i] $P$ until the first time that the line meets some other point belonging to $\mathcal S$. This point, $Q$, takes over as the new pivot, and the line now rotates clockwise about $Q$, until it next meets a point of $\mathcal S$. This process continues indefinitely. Show that we can choose a point $P$ in $\mathcal S$ and a line $\ell$ going through $P$ such that the resulting windmill uses each point of $\mathcal S$ as a pivot infinitely many times. [i]Proposed by Geoffrey Smith, United Kingdom[/i]