Found problems: 150
1961 AMC 12/AHSME, 12
The first three terms of a geometric progression are $\sqrt{2}, \sqrt[3]{2}, \sqrt[6]{2}$. Find the fourth term.
${{ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ \sqrt[7]{2} \qquad\textbf{(C)}\ \sqrt[8]{2} \qquad\textbf{(D)}\ \sqrt[9]{2} }\qquad\textbf{(E)}\ \sqrt[10]{2} } $
2014 NIMO Summer Contest, 4
Let $n$ be a positive integer. Determine the smallest possible value of $1-n+n^2-n^3+\dots+n^{1000}$.
[i]Proposed by Evan Chen[/i]
1952 AMC 12/AHSME, 50
A line initially $ 1$ inch long grows according to the following law, where the first term is the initial length.
\[ 1 \plus{} \frac {1}{4}\sqrt {2} \plus{} \frac {1}{4} \plus{} \frac {1}{16}\sqrt {2} \plus{} \frac {1}{16} \plus{} \frac {1}{64}\sqrt {2} \plus{} \frac {1}{64} \plus{} \cdots.
\]If the growth process continues forever, the limit of the length of the line is:
$ \textbf{(A)}\ \infty \qquad\textbf{(B)}\ \frac {4}{3} \qquad\textbf{(C)}\ \frac {8}{3} \qquad\textbf{(D)}\ \frac {1}{3}(4 \plus{} \sqrt {2}) \qquad\textbf{(E)}\ \frac {2}{3}(4 \plus{} \sqrt {2})$
2005 Brazil National Olympiad, 6
Given positive integers $a,c$ and integer $b$, prove that there exists a positive integer $x$ such that
\[ a^x + x \equiv b \pmod c, \]
that is, there exists a positive integer $x$ such that $c$ is a divisor of $a^x + x - b$.
2011 India Regional Mathematical Olympiad, 3
Let $a,b,c>0.$ If $\frac 1a,\frac 1b,\frac 1c$ are in arithmetic progression, and if $a^2+b^2,b^2+c^2,c^2+a^2$ are in geometric progression, show that $a=b=c.$
2024 China Team Selection Test, 20
A positive integer is a good number, if its base $10$ representation can be split into at least $5$ sections, each section with a non-zero digit, and after interpreting each section as a positive integer (omitting leading zero digits), they can be split into two groups, such that each group can be reordered to form a geometric sequence (if a group has $1$ or $2$ numbers, it is also a geometric sequence), for example $20240327$ is a good number, since after splitting it as $2|02|403|2|7$, $2|02|2$ and $403|7$ form two groups of geometric sequences.
If $a>1$, $m>2$, $p=1+a+a^2+\dots+a^m$ is a prime, prove that $\frac{10^{p-1}-1}{p}$ is a good number.
2010 AMC 12/AHSME, 19
A high school basketball game between the Raiders and Wildcats was tied at the end of the first quarter. The number of points scored by the Raiders in each of the four quarters formed an increasing geometric sequence, and the number of points scored by the Wildcats in each of the four quarters formed an increasing arithmetic sequence. At the end of the fourth quarter, the Raiders had won by one point. Neither team scored more than $ 100$ points. What was the total number of points scored by the two teams in the first half?
$ \textbf{(A)}\ 30 \qquad \textbf{(B)}\ 31 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 33 \qquad \textbf{(E)}\ 34$
2012 South East Mathematical Olympiad, 1
Find a triple $(l, m, n)$ of positive integers $(1<l<m<n)$, such that $\sum_{k=1}^{l}k, \sum_{k=l+1}^{m}k, \sum_{k=m+1}^{n}k$ form a geometric sequence in order.
1993 Canada National Olympiad, 2
Show that the number $x$ is rational if and only if three distinct terms that form a geometric progression can be chosen from the sequence
\[x, ~ x+1, ~ x+2,~ x+3,\ldots . \]
2019 CMIMC, 1
Let $a_1$, $a_2$, $\ldots$, $a_n$ be a geometric progression with $a_1 = \sqrt{2}$ and $a_2 = \sqrt[3]{3}$. What is \[\displaystyle{\frac{a_1+a_{2013}}{a_7+a_{2019}}}?\]
1996 Greece National Olympiad, 1
Let $a_n$ be a sequence of positive numbers such that:
i) $\dfrac{a_{n+2}}{a_n}=\dfrac{1}{4}$, for every $n\in\mathbb{N}^{\star}$
ii) $\dfrac{a_{k+1}}{a_k}+\dfrac{a_{n+1}}{a_n}=1$, for every $ k,n\in\mathbb{N}^{\star}$ with $|k-n|\neq 1$.
(a) Prove that $(a_n)$ is a geometric progression.
(n) Prove that exists $t>0$, such that $\sqrt{a_{n+1}}\leq \dfrac{1}{2}a_n+t$
1976 AMC 12/AHSME, 4
Let a geometric progression with $n$ terms have first term one, common ratio $r$ and sum $s$, where $r$ and $s$ are not zero. The sum of the geometric progression formed by replacing each term of the original progression by its reciprocal is
$\textbf{(A) }\frac{1}{s}\qquad\textbf{(B) }\frac{1}{r^ns}\qquad\textbf{(C) }\frac{s}{r^{n-1}}\qquad\textbf{(D) }\frac{r^n}{s}\qquad \textbf{(E) }\frac{r^{n-1}}{s}$
1991 AMC 8, 25
An equilateral triangle is originally painted black. Each time the triangle is changed, the middle fourth of each black triangle turns white. After five changes, what fractional part of the original area of the black triangle remains black?
[asy]
unitsize(36);
fill((0,0)--(2,0)--(1,sqrt(3))--cycle,gray); draw((0,0)--(2,0)--(1,sqrt(3))--cycle,linewidth(1));
fill((4,0)--(6,0)--(5,sqrt(3))--cycle,gray); fill((5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--cycle,white);
draw((5,sqrt(3))--(4,0)--(5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--(5,0)--(6,0)--cycle,linewidth(1));
fill((8,0)--(10,0)--(9,sqrt(3))--cycle,gray); fill((9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--cycle,white);
fill((17/2,0)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--cycle,white);
fill((9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--cycle,white);
fill((19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--cycle,white);
draw((9,sqrt(3))--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--(9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--(17/2,0)--(33/4,sqrt(3)/4)--(8,0)--(9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--(9,0)--(19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--(19/2,0)--(10,0)--cycle,linewidth(1));
label("Change 1",(3,3*sqrt(3)/4),N); label("$\Longrightarrow $",(3,5*sqrt(3)/8),S);
label("Change 2",(7,3*sqrt(3)/4),N); label("$\Longrightarrow $",(7,5*sqrt(3)/8),S);
[/asy]
$\text{(A)}\ \frac{1}{1024} \qquad \text{(B)}\ \frac{15}{64} \qquad \text{(C)}\ \frac{243}{1024} \qquad \text{(D)}\ \frac{1}{4} \qquad \text{(E)}\ \frac{81}{256}$
1982 IMO, 3
Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$.
[b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \]
[b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]
1976 Canada National Olympiad, 1
Given four weights in geometric progression and an equal arm balance, show how to find the heaviest weight using the balance only twice.
1982 IMO Shortlist, 3
Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$.
[b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \]
[b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]
2019 Centers of Excellency of Suceava, 3
Let $ \left( a_n \right)_{n\ge 1} $ be a non-constant arithmetic progression of positive numbers and $ \left( g_n \right)_{n\ge 1} $ be a non-constant geometric progression of positive numbers satisfying $ a_1=g_1 $ and $ a_{2019} =g_{2019} . $
Specify the set $ \left\{ k\in\mathbb{N} \big| a_k\le g_k \right\} $ and prove that it bijects the natural numbers.
[i]Gheorghe Rotariu[/i]
2020 AIME Problems, 2
There is a unique positive real number $x$ such that the three numbers $\log_8(2x),\log_4x,$ and $\log_2x,$ in that order, form a geometric progression with positive common ratio. The number $x$ can be written as $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2012 Math Prize For Girls Problems, 11
Alison has an analog clock whose hands have the following lengths: $a$ inches (the hour hand), $b$ inches (the minute hand), and $c$ inches (the second hand), with $a < b < c$. The numbers $a$, $b$, and $c$ are consecutive terms of an arithmetic sequence. The tips of the hands travel the following distances during a day: $A$ inches (the hour hand), $B$ inches (the minute hand), and $C$ inches (the second hand). The numbers $A$, $B$, and $C$ (in this order) are consecutive terms of a geometric sequence. What is the value of $\frac{B}{A}$?
1994 Bundeswettbewerb Mathematik, 4
Let $a,b$ be real numbers ($b\ne 0$) and consider the infinite arithmetic sequence $a, a+b ,a +2b , \ldots.$ Show that this sequence contains an infinite geometric subsequence if and only if $\frac{a}{b}$ is rational.
1959 AMC 12/AHSME, 12
By adding the same constant to $20,50,100$ a geometric progression results. The common ratio is:
$ \textbf{(A)}\ \frac53 \qquad\textbf{(B)}\ \frac43\qquad\textbf{(C)}\ \frac32\qquad\textbf{(D)}\ \frac12\qquad\textbf{(E)}\ \frac13 $
2006 ISI B.Stat Entrance Exam, 10
Consider a function $f$ on nonnegative integers such that $f(0)=1, f(1)=0$ and $f(n)+f(n-1)=nf(n-1)+(n-1)f(n-2)$ for $n \ge 2$. Show that
\[\frac{f(n)}{n!}=\sum_{k=0}^n \frac{(-1)^k}{k!}\]
2022 USAJMO, 1
For which positive integers $m$ does there exist an infinite arithmetic sequence of integers $a_1, a_2, . . .$ and an infinite geometric sequence of integers $g_1, g_2, . . .$ satisfying the following properties?
[list]
[*] $a_n - g_n$ is divisible by $m$ for all integers $n \ge 1$;
[*] $a_2 - a_1$ is not divisible by $m$.
[/list]
[i]Holden Mui[/i]
2017 India PRMO, 5
Let $u, v,w$ be real numbers in geometric progression such that $u > v > w$. Suppose $u^{40} = v^n = w^{60}$. Find the value of $n$.
2010 Princeton University Math Competition, 2
In a rectangular plot of land, a man walks in a very peculiar fashion. Labeling the corners $ABCD$, he starts at $A$ and walks to $C$. Then, he walks to the midpoint of side $AD$, say $A_1$. Then, he walks to the midpoint of side $CD$ say $C_1$, and then the midpoint of $A_1D$ which is $A_2$. He continues in this fashion, indefinitely. The total length of his path if $AB=5$ and $BC=12$ is of the form $a + b\sqrt{c}$. Find $\displaystyle\frac{abc}{4}$.