Found problems: 150
2024 AMC 10, 19
The first three terms of a geometric sequence are the integers $a,\,720,$ and $b,$ where $a<720<b.$ What is the sum of the digits of the least possible value of $b?$
$\textbf{(A) } 9 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 21$
2022 BMT, 3
Suppose we have four real numbers $a,b,c,d$ such that $a$ is nonzero, $a,b,c$ form a geometric sequence, in that order, and $b,c,d$ form an arithmetic sequence, in that order. Compute the smallest possible value of $\frac{d}{a}.$ (A geometric sequence is one where every succeeding term can be written as the previous term multiplied by a constant, and an arithmetic sequence is one where every succeeeding term can be written as the previous term added to a constant.)
2010 Princeton University Math Competition, 5
In a rectangular plot of land, a man walks in a very peculiar fashion. Labeling the corners $ABCD$, he starts at $A$ and walks to $C$. Then, he walks to the midpoint of side $AD$, say $A_1$. Then, he walks to the midpoint of side $CD$ say $C_1$, and then the midpoint of $A_1D$ which is $A_2$. He continues in this fashion, indefinitely. The total length of his path if $AB=5$ and $BC=12$ is of the form $a + b\sqrt{c}$. Find $\displaystyle\frac{abc}{4}$.
2001 National High School Mathematics League, 13
$(a_n)$ is an arithmetic sequence, $(b_n)$ is a geometric sequence. If $b_1=a_1^2,b_2=a_2^2,b_3=a_3^2(a_1<a_2)$, and $\lim_{n\to\infty}(b_1+b_2+\cdots+b_n)=\sqrt2+1$, find $a_n$.
2006 Bosnia and Herzegovina Team Selection Test, 4
Prove that every infinite arithmetic progression $a$, $a+d$, $a+2d$,... where $a$ and $d$ are positive integers, contains infinte geometric progression $b$, $bq$, $bq^2$,... where $b$ and $q$ are also positive integers
1981 AMC 12/AHSME, 14
In a geometric sequence of real numbers, the sum of the first two terms is 7, and the sum of the first 6 terms is 91. The sum of the first 4 terms is
$\text{(A)}\ 28 \qquad \text{(B)}\ 32 \qquad \text{(C)}\ 35 \qquad \text{(D)}\ 49 \qquad \text{(E)}\ 84$
1951 AMC 12/AHSME, 11
The limit of the sum of an infinite number of terms in a geometric progression is $ \frac {a}{1 \minus{} r}$ where $ a$ denotes the first term and $ \minus{} 1 < r < 1$ denotes the common ratio. The limit of the sum of their squares is:
$ \textbf{(A)}\ \frac {a^2}{(1 \minus{} r)^2} \qquad\textbf{(B)}\ \frac {a^2}{1 \plus{} r^2} \qquad\textbf{(C)}\ \frac {a^2}{1 \minus{} r^2} \qquad\textbf{(D)}\ \frac {4a^2}{1 \plus{} r^2} \qquad\textbf{(E)}\ \text{none of these}$
1966 Spain Mathematical Olympiad, 7
Determine a geometric progression of seven terms, knowing the sum, $7$, of the first three, and the sum, $112$, of the last three.
2009 USAMTS Problems, 5
The cubic equation $x^3+2x-1=0$ has exactly one real root $r$. Note that $0.4<r<0.5$.
(a) Find, with proof, an increasing sequence of positive integers $a_1 < a_2 < a_3 < \cdots$ such that
\[\frac{1}{2}=r^{a_1}+r^{a_2}+r^{a_3}+\cdots.\]
(b) Prove that the sequence that you found in part (a) is the unique increasing sequence with the above property.
2016 Spain Mathematical Olympiad, 1
Two real number sequences are guiven, one arithmetic $\left(a_n\right)_{n\in \mathbb {N}}$ and another geometric sequence $\left(g_n\right)_{n\in \mathbb {N}}$ none of them constant. Those sequences verifies $a_1=g_1\neq 0$, $a_2=g_2$ and $a_{10}=g_3$. Find with proof that, for every positive integer $p$, there is a positive integer $m$, such that $g_p=a_m$.
1978 AMC 12/AHSME, 24
If the distinct non-zero numbers $x ( y - z),~ y(z - x),~ z(x - y )$ form a geometric progression with common ratio $r$, then $r$ satisfies the equation
$\textbf{(A) }r^2+r+1=0\qquad\textbf{(B) }r^2-r+1=0\qquad\textbf{(C) }r^4+r^2-1=0$
$\qquad\textbf{(D) }(r+1)^4+r=0\qquad \textbf{(E) }(r-1)^4+r=0$
2004 Postal Coaching, 19
Suppose a circle passes through the feet of the symmedians of a non-isosceles triangle $ABC$ , and is tangent to one of the sides. Show that $a^2 +b^2, b^2 + c^2 , c^2 + a^2$ are in geometric progression when taken in some order
1982 IMO Longlists, 53
Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$.
[b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \]
[b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]
2023 Indonesia TST, 3
Find all positive integers $n \geqslant 2$ for which there exist $n$ real numbers $a_1<\cdots<a_n$ and a real number $r>0$ such that the $\tfrac{1}{2}n(n-1)$ differences $a_j-a_i$ for $1 \leqslant i<j \leqslant n$ are equal, in some order, to the numbers $r^1,r^2,\ldots,r^{\frac{1}{2}n(n-1)}$.
2001 Tuymaada Olympiad, 4
Natural numbers $1, 2, 3,.., 100$ are contained in the union of $N$ geometric progressions (not necessarily with integer denominations). Prove that $N \ge 31$
2016 USAMTS Problems, 2:
Find all triples of three-digit positive integers $x < y < z$ with $x,y,z$ in arithmetic progression and $x, y, z + 1000$ in geometric progression.
[i]For this problem, you may use calculators or computers to gain an intuition about how to solve the problem. However, your final submission should include mathematical derivations or proofs and should not be a solution by exhaustive search.[/i]
1995 Poland - First Round, 6
Given two sequences of positive integers: the arithmetic sequence with difference $r > 0$ and the geometric sequence with ratio $q > 1$; $r$ and $q$ are coprime. Prove that if these sequences have one term in common, then they have them infinitely many.
1952 AMC 12/AHSME, 12
The sum to infinity of the terms of an infinite geometric progression is $ 6$. The sum of the first two terms is $ 4\frac {1}{2}$. The first term of the progression is:
$ \textbf{(A)}\ 3 \text{ or } 1\frac {1}{2} \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2\frac {1}{2} \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 9 \text{ or } 3$
2003 AMC 10, 8
The second and fourth terms of a geometric sequence are $ 2$ and $ 6$. Which of the following is a possible first term?
$ \textbf{(A)}\ \minus{}\!\sqrt3 \qquad
\textbf{(B)}\ \minus{}\!\frac{2\sqrt3}{3} \qquad
\textbf{(C)}\ \minus{}\!\frac{\sqrt3}{3} \qquad
\textbf{(D)}\ \sqrt3 \qquad
\textbf{(E)}\ 3$
2010 AMC 10, 24
A high school basketball game between the Raiders and Wildcats was tied at the end of the first quarter. The number of points scored by the Raiders in each of the four quarters formed an increasing geometric sequence, and the number of points scored by the Wildcats in each of the four quarters formed an increasing arithmetic sequence. At the end of the fourth quarter, the Raiders had won by one point. Neither team scored more than $ 100$ points. What was the total number of points scored by the two teams in the first half?
$ \textbf{(A)}\ 30 \qquad \textbf{(B)}\ 31 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 33 \qquad \textbf{(E)}\ 34$
2002 South africa National Olympiad, 2
Find all triples of natural numbers $(a,b,c)$ such that $a$, $b$ and $c$ are in geometric progression and $a + b + c = 111$.
1968 German National Olympiad, 4
Sixteen natural numbers written in the decimal system may form a geometric sequence, of which the first five members have nine digits, five further members have ten digits, four members have eleven digits and two terms have twelve digits. Prove that there is exactly one sequence with these properties.
2015 AMC 12/AHSME, 20
For every positive integer $n$, let $\operatorname{mod_5}(n)$ be the remainder obtained when $n$ is divided by $5$. Define a function $f : \{0, 1, 2, 3, \dots\} \times \{0, 1, 2, 3, 4\} \to \{0, 1, 2, 3, 4\}$ recursively as follows:
\[f(i, j) = \begin{cases}
\operatorname{mod_5}(j+1) & \text{if }i=0\text{ and }0\leq j\leq 4 \\
f(i-1, 1) & \text{if }i\geq 1\text{ and }j=0 \text{, and}\\
f(i-1, f(i, j-1)) & \text{if }i\geq 1\text{ and }1\leq j\leq 4
\end{cases}\]
What is $f(2015, 2)$?
$\textbf{(A) }0 \qquad\textbf{(B) }1 \qquad\textbf{(C) }2 \qquad\textbf{(D) }3 \qquad\textbf{(E) }4$
1964 AMC 12/AHSME, 6
If $x, 2x+2, 3x+3, \dots$ are in geometric progression, the fourth term is:
${{ \textbf{(A)}\ -27 \qquad\textbf{(B)}\ -13\frac{1}{2} \qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 13\frac{1}{2} }\qquad\textbf{(E)}\ 27 } $
2014 NIMO Problems, 4
Let $n$ be a positive integer. Determine the smallest possible value of $1-n+n^2-n^3+\dots+n^{1000}$.
[i]Proposed by Evan Chen[/i]