Found problems: 801
2010 IMC, 4
Let $A$ be a symmetric $m\times m$ matrix over the two-element field all of whose diagonal entries are zero. Prove that for every positive integer $n$ each column of the matrix $A^n$ has a zero entry.
2001 China Team Selection Test, 2.1
Let the vertex set \( V \) of a graph be partitioned into \( h \) parts \( (V = V_1 \cup V_2 \cup \cdots \cup V_h) \), with \(|V_1| = n_1, |V_2| = n_2, \ldots, |V_h| = n_h \). If there is an edge between any two vertices only when they belong to different parts, the graph is called a complete \( h \)-partite graph, denoted as \( k(n_1, n_2, \ldots, n_h) \). Let \( n \) and \( r \) be positive integers, \( n \geq 6 \), \( r \leq \frac{2}{3}n \). Consider the complete \( r + 1 \)-partite graph \( k\left(\underbrace{1, 1, \ldots, 1}_{r}, n - r\right) \).
Answer the following questions:
1. Find the maximum number of disjoint circles (i.e., circles with no common vertices) in this complete \( r + 1 \)-partite graph.
2. Given \( n \), for all \( r \leq \frac{2}{3}n \), find the maximum number of edges in a complete \( r + 1 \)-partite graph \( k(1, 1, \ldots, 1, n - r) \) where no more than one circle is disjoint.
2019 Dutch IMO TST, 4
There are $300$ participants to a mathematics competition. After the competition some of the contestants play some games of chess. Each two contestants play at most one game against each other. There are no three contestants, such that each of them plays against each other. Determine the maximum value of $n$ for which it is possible to satisfy the following conditions at the same time: each contestant plays at most $n$ games of chess, and for each $m$ with $1 \le m \le n$, there is a contestant playing exactly $m$ games of chess.
2018 Korea Winter Program Practice Test, 4
Graph $G$ is defined in 3d space. It has $e$ edges and every vertex are connected if the distance between them is $1.$ Given that there exists the Hamilton cycle, prove that for $e>1,$ we have $$\min d(v)\le 1+2\left(\frac{e}{2}\right)^{0.4}.$$
2018 Iran Team Selection Test, 6
A simple graph is called "divisibility", if it's possible to put distinct numbers on its vertices such that there is an edge between two vertices if and only if number of one of its vertices is divisible by another one.
A simple graph is called "permutationary", if it's possible to put numbers $1,2,...,n$ on its vertices and there is a permutation $ \pi $ such that there is an edge between vertices $i,j$ if and only if $i>j$ and $\pi(i)< \pi(j)$ (it's not directed!)
Prove that a simple graph is permutationary if and only if its complement and itself are divisibility.
[i]Proposed by Morteza Saghafian[/i]
.
2012 German National Olympiad, 2
Find the maximal number of edges a connected graph $G$ with $n$ vertices may have, so that after deleting an arbitrary cycle, $G$ is not connected anymore.
2007 Germany Team Selection Test, 2
An $ (n, k) \minus{}$ tournament is a contest with $ n$ players held in $ k$ rounds such that:
$ (i)$ Each player plays in each round, and every two players meet at most once.
$ (ii)$ If player $ A$ meets player $ B$ in round $ i$, player $ C$ meets player $ D$ in round $ i$, and player $ A$ meets player $ C$ in round $ j$, then player $ B$ meets player $ D$ in round $ j$.
Determine all pairs $ (n, k)$ for which there exists an $ (n, k) \minus{}$ tournament.
[i]Proposed by Carlos di Fiore, Argentina[/i]
Mathematical Minds 2023, P5
At a company, there are several workers, some of which are enemies. They go to their job with 100 buses, in such a way that there aren't any enemies in either bus. Having arrived at the job, their chief wants to assign them to brigades of at least two people, without assigning two enemies to the same brigade. Prove that the chief can split the workers in at most 100 brigades, or he cannot split them at all in any number of brigades.
2016 Turkey Team Selection Test, 2
In a class with $23$ students, each pair of students have watched a movie together. Let the set of movies watched by a student be his [i]movie collection[/i]. If every student has watched every movie at most once, at least how many different movie collections can these students have?
Russian TST 2021, P3
Given a natural number $n\geqslant 2$, find the smallest possible number of edges in a graph that has the following property: for any coloring of the vertices of the graph in $n{}$ colors, there is a vertex that has at least two neighbors of the same color as itself.
2010 IMAR Test, 3
Given an integer $n\ge 2$, given $n+1$ distinct points $X_0,X_1,\ldots,X_n$ in the plane, and a positive real number $A$, show that the number of triangles $X_0X_iX_j$ of area $A$ does not exceed $4n\sqrt n$.
2007 Germany Team Selection Test, 2
An $ (n, k) \minus{}$ tournament is a contest with $ n$ players held in $ k$ rounds such that:
$ (i)$ Each player plays in each round, and every two players meet at most once.
$ (ii)$ If player $ A$ meets player $ B$ in round $ i$, player $ C$ meets player $ D$ in round $ i$, and player $ A$ meets player $ C$ in round $ j$, then player $ B$ meets player $ D$ in round $ j$.
Determine all pairs $ (n, k)$ for which there exists an $ (n, k) \minus{}$ tournament.
[i]Proposed by Carlos di Fiore, Argentina[/i]
2007 Italy TST, 1
We have a complete graph with $n$ vertices. We have to color the vertices and the edges in a way such that: no two edges pointing to the same vertice are of the same color; a vertice and an edge pointing him are coloured in a different way. What is the minimum number of colors we need?
2012 France Team Selection Test, 1
Let $n$ and $k$ be two positive integers. Consider a group of $k$ people such that, for each group of $n$ people, there is a $(n+1)$-th person that knows them all (if $A$ knows $B$ then $B$ knows $A$).
1) If $k=2n+1$, prove that there exists a person who knows all others.
2) If $k=2n+2$, give an example of such a group in which no-one knows all others.
1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 7
In a class, the teacher discovers that every pupil has exactly three friends in the class, that two friends never have a common friend, and that every pair of two pupils who are not friends they have exactly one common friend. How many pupils are there in the class?
A. 6
B. 9
C. 10
D. 12
E. 17
2019 Romanian Masters In Mathematics, 6
Find all pairs of integers $(c, d)$, both greater than 1, such that the following holds:
For any monic polynomial $Q$ of degree $d$ with integer coefficients and for any prime $p > c(2c+1)$, there exists a set $S$ of at most $\big(\tfrac{2c-1}{2c+1}\big)p$ integers, such that
\[\bigcup_{s \in S} \{s,\; Q(s),\; Q(Q(s)),\; Q(Q(Q(s))),\; \dots\}\]
contains a complete residue system modulo $p$ (i.e., intersects with every residue class modulo $p$).
2008 Miklós Schweitzer, 3
A bipartite graph on the sets $\{ x_1,\ldots, x_n \}$ and $\{ y_1,\ldots, y_n\}$ of vertices (that is the edges are of the form $x_iy_j$) is called tame if it has no $x_iy_jx_ky_l$ path ($i,j,k,l\in\{ 1,\ldots, n\}$) where $j<l$ and $i+j>k+l$. Calculate the infimum of those real numbers $\alpha$ for which there exists a constant $c=c(\alpha)>0$ such that for all tame graphs $e\le cn^{\alpha}$, where $e$ is the number of edges and $n$ is half of the number of vertices.
(translated by Miklós Maróti)
1991 IMO Shortlist, 10
Suppose $ \,G\,$ is a connected graph with $ \,k\,$ edges. Prove that it is possible to label the edges $ 1,2,\ldots ,k\,$ in such a way that at each vertex which belongs to two or more edges, the greatest common divisor of the integers labeling those edges is equal to 1.
[b]Note: Graph-Definition[/b]. A [b]graph[/b] consists of a set of points, called vertices, together with a set of edges joining certain pairs of distinct vertices. Each pair of vertices $ \,u,v\,$ belongs to at most one edge. The graph $ G$ is connected if for each pair of distinct vertices $ \,x,y\,$ there is some sequence of vertices $ \,x \equal{} v_{0},v_{1},v_{2},\cdots ,v_{m} \equal{} y\,$ such that each pair $ \,v_{i},v_{i \plus{} 1}\;(0\leq i < m)\,$ is joined by an edge of $ \,G$.
2010 All-Russian Olympiad, 4
In the county some pairs of towns connected by two-way non-stop flight. From any town we can flight to any other (may be not on one flight). Gives, that if we consider any cyclic (i.e. beginning and finish towns match) route, consisting odd number of flights, and close all flights of this route, then we can found two towns, such that we can't fly from one to other.
Proved, that we can divided all country on $4$ regions, such that any flight connected towns from other regions.
1985 IMO Longlists, 91
Thirty-four countries participated in a jury session of the IMO, each represented by the leader and the deputy leader of the team. Before the meeting, some participants exchanged handshakes, but no team leader shook hands with his deputy. After the meeting, the leader of the Illyrian team asked every other participant the number of people they had shaken hands with, and all the answers she got were different. How many people did the deputy leader of the Illyrian team greet ?
2011 USA TSTST, 5
At a certain orphanage, every pair of orphans are either friends or enemies. For every three of an orphan's friends, an even number of pairs of them are enemies. Prove that it's possible to assign each orphan two parents such that every pair of friends shares exactly one parent, but no pair of enemies does, and no three parents are in a love triangle (where each pair of them has a child).
2022 Turkey MO (2nd round), 6
In a school with $2022$ students, either a museum trip or a nature trip is organized every day during a holiday. No student participates in the same type of trip twice, and the number of students attending each trip is different. If there are no two students participating in the same two trips together, find the maximum number of trips held.
1992 Miklós Schweitzer, 10
We place n points in the unit square independently, according to a uniform distribution. These points are the vertices of a graph $G_n$. Two points are connected by an edge if the slope of the segment connecting them is nonnegative. Denote by $M_n$ the event that the graph $G_n$ has a 1-factor. Prove that $\lim_{n \to \infty} P(M_ {2n}) = 1$.
1999 IMC, 5
Suppose that $2n$ points of an $n\times n$ grid are marked. Show that for some $k > 1$ one can select $2k$ distinct marked points, say $a_1,...,a_{2k}$, such that $a_{2i-1}$ and $a_{2i}$ are in the same row, $a_{2i}$ and $a_{2i+1}$ are in the same column, $\forall i$, indices taken mod 2n.
2021 Iran Team Selection Test, 6
Prove that we can color every subset with $n$ element of a set with $3n$ elements with $8$ colors . In such a way that there are no $3$ subsets $A,B,C$ with the same color where :
$$|A \cap B| \le 1,|A \cap C| \le 1,|B \cap C| \le 1$$
Proposed by [i]Morteza Saghafian[/i] and [i]Amir Jafari[/i]