This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 801

2008 Pre-Preparation Course Examination, 1

$ R_k(m,n)$ is the least number such that for each coloring of $ k$-subsets of $ \{1,2,\dots,R_k(m,n)\}$ with blue and red colors, there is a subset with $ m$ elements such that all of its k-subsets are red or there is a subset with $ n$ elements such that all of its $ k$-subsets are blue. a) If we give a direction randomly to all edges of a graph $ K_n$ then what is the probability that the resultant graph does not have directed triangles? b) Prove that there exists a $ c$ such that $ R_3(4,n)\geq2^{cn}$.

2014 China Team Selection Test, 5

Find the smallest positive constant $c$ satisfying: For any simple graph $G=G(V,E)$, if $|E|\geq c|V|$, then $G$ contains $2$ cycles with no common vertex, and one of them contains a chord. Note: The cycle of graph $G(V,E)$ is a set of distinct vertices ${v_1,v_2...,v_n}\subseteq V$, $v_iv_{i+1}\in E$ for all $1\leq i\leq n$ $(n\geq 3, v_{n+1}=v_1)$; a cycle containing a chord is the cycle ${v_1,v_2...,v_n}$, such that there exist $i,j, 1< i-j< n-1$, satisfying $v_iv_j\in E$.

Russian TST 2018, P3

There are 300 children in a camp. Everyone has no more than $k-1$ friends. What is the smallest $k{}$ for which it might be impossible to create some new friendships so that everyone has exactly $k{}$ friends?

2014 USA Team Selection Test, 3

Let $n$ be an even positive integer, and let $G$ be an $n$-vertex graph with exactly $\tfrac{n^2}{4}$ edges, where there are no loops or multiple edges (each unordered pair of distinct vertices is joined by either 0 or 1 edge). An unordered pair of distinct vertices $\{x,y\}$ is said to be [i]amicable[/i] if they have a common neighbor (there is a vertex $z$ such that $xz$ and $yz$ are both edges). Prove that $G$ has at least $2\textstyle\binom{n/2}{2}$ pairs of vertices which are amicable. [i]Zoltán Füredi (suggested by Po-Shen Loh)[/i]

2020 Canadian Mathematical Olympiad Qualification, 4

Determine all graphs $G$ with the following two properties: $\bullet$ G contains at least one Hamilton path. $\bullet$ For any pair of vertices, $u, v \in G$, if there is a Hamilton path from $u$ to $v$ then the edge $uv$ is in the graph $G$

2002 China National Olympiad, 3

In a competition there are $18$ teams and in each round $18$ teams are divided into $9$ pairs where the $9$ matches are played coincidentally. There are $17$ rounds, so that each pair of teams play each other exactly once. After $n$ rounds, there always exists $4$ teams such that there was exactly one match played between these teams in those $n$ rounds. Find the maximum value of $n$.

Kvant 2019, M2557

Given any positive real number $\varepsilon$, prove that, for all but finitely many positive integers $v$, any graph on $v$ vertices with at least $(1+\varepsilon)v$ edges has two distinct simple cycles of equal lengths. (Recall that the notion of a simple cycle does not allow repetition of vertices in a cycle.) [i]Fedor Petrov, Russia[/i]

2017 Baltic Way, 7

Each edge of a complete graph on $30$ vertices is coloured either red or blue. It is allowed to choose a non-monochromatic triangle and change the colour of the two edges of the same colour to make the triangle monochromatic. Prove that by using this operation repeatedly it is possible to make the entire graph monochromatic. (A complete graph is a graph where any two vertices are connected by an edge.)

2000 Polish MO Finals, 2

In the unit squre For the given natural number $n \geq 2$ find the smallest number $k$ that from each set of $k$ unit squares of the $n$x$n$ chessboard one can achoose a subset such that the number of the unit squares contained in this subset an lying in a row or column of the chessboard is even

2010 ELMO Shortlist, 8

A tree $T$ is given. Starting with the complete graph on $n$ vertices, subgraphs isomorphic to $T$ are erased at random until no such subgraph remains. For what trees does there exist a positive constant $c$ such that the expected number of edges remaining is at least $cn^2$ for all positive integers $n$? [i]David Yang.[/i]

2016 All-Russian Olympiad, 6

There are $n>1$ cities in the country, some pairs of cities linked two-way through straight flight. For every pair of cities there is exactly one aviaroute (can have interchanges). Major of every city X counted amount of such numberings of all cities from $1$ to $n$ , such that on every aviaroute with the beginning in X, numbers of cities are in ascending order. Every major, except one, noticed that results of counting are multiple of $2016$. Prove, that result of last major is multiple of $2016$ too.

2009 China Team Selection Test, 2

Let $ n,k$ be given positive integers satisfying $ k\le 2n \minus{} 1$. On a table tennis tournament $ 2n$ players take part, they play a total of $ k$ rounds match, each round is divided into $ n$ groups, each group two players match. The two players in different rounds can match on many occasions. Find the greatest positive integer $ m \equal{} f(n,k)$ such that no matter how the tournament processes, we always find $ m$ players each of pair of which didn't match each other.

2017 Poland - Second Round, 5

Gourmet Jan compared $n$ restaurants ($n$ is a positive integer). Each pair of restaurants was compared in two categories: tastiness of food and quality of service. For some pairs Jan couldn't tell which restaurant was better in one category, but never in two categories. Moreover, if Jan thought restaurant $A$ was better than restaurant $B$ in one category and restaurant $B$ was better than restaurant $C$ in the same category, then $A$ is also better than $C$ in that category. Prove there exists a restaurant $R$ such that every other restaurant is worse than $R$ in at least one category.

1966 IMO Shortlist, 24

There are $n\geq 2$ people at a meeting. Show that there exist two people at the meeting who have the same number of friends among the persons at the meeting. (It is assumed that if $A$ is a friend of $B,$ then $B$ is a friend of $A;$ moreover, nobody is his own friend.)

2003 National High School Mathematics League, 3

Tags: graph theory
A space figure is consisted of $n$ vertexes and $l$ lines connecting these vertices, where $n=q^2+q+1, l\geq\frac{1}{2}q(q+1)^2+1,q\geq2,q\in\mathbb{Z}_+$. The figure satisfies: every four vertices are not coplane, every vertex is connected by at least one line, and there is a vertex connected by at least $q+2$ lines. Prove that there exists a space quadrilateral in the figure. Note: a space quadrilateral is figure with four vertices $A, B, C, D$ and four lines $ AB, BC, CD, DA$.

2013 239 Open Mathematical Olympiad, 4

We are given a graph $G$ with $n$ edges. For each edge, we write down the lesser degree of two vertices at the end of that edge. Prove that the sum of the resulting $n$ numbers is at most $100n\sqrt{n}$.

2004 Olympic Revenge, 6

For any natural $n$, $f(n)$ is the number of labeled digraphs with $n$ vertices such that for any vertex the number if in-edges is equal to the number of out-edges and the total of (in+out) edges is even. Let $g(n)$ be the odd-analogous of $f(n)$. Find $g(n)-f(n)$ with proof . [hide=original formulation] Dado $n$ natural, seja $f(n)$ o número de grafos rotulados direcionados com $n$ vértices de modo que em cada vértice o número de arestas que chegam é igual ao número de arestas que saem e o número de arestas total do grafo é par . Defina $g(n)$ analogamente trocando "par" por "ímpar" na definição acima. Calcule $f(n) - g (n)$. (Observação: Um grafo rotulado direcionado é um par $G = (V, E)$ onde $V = \{1, 2, …, n\}$ e $E$ é um subconjunto de $V^2 -\{(i, i); 0 < i < n + 1\}$).[/hide]

1975 Miklós Schweitzer, 12

Assume that a face of a convex polyhedron $ P$ has a common edge with every other face. Show that there exists a simple closed polygon that consists of edges of $ P$ and passes through all vertices. [i]L .Lovasz[/i]

2023 Taiwan TST Round 3, 5

Let $N$ be a positive integer. Kingdom Wierdo has $N$ castles, with at most one road between each pair of cities. There are at most four guards on each road. To cost down, the King of Wierdos makes the following policy: (1) For any three castles, if there are roads between any two of them, then any of these roads cannot have four guards. (2) For any four castles, if there are roads between any two of them, then for any one castle among them, the roads from it toward the other three castles cannot all have three guards. Prove that, under this policy, the total number of guards on roads in Kingdom Wierdo is smaller than or equal to $N^2$. [i]Remark[/i]: Proving that the number of guards does not exceed $cN^2$ for some $c > 1$ independent of $N$ will be scored based on the value of $c$. [i]Proposed by usjl[/i]

2023 Ukraine National Mathematical Olympiad, 11.8

There are $2024$ cities in a country, every two of which are bidirectionally connected by exactly one of three modes of transportation - rail, air, or road. A tourist has arrived in this country and has the entire transportation scheme. He chooses a travel ticket for one of the modes of transportation and the city from which he starts his trip. He wants to visit as many cities as possible, but using only the ticket for the specified type of transportation. What is the largest $k$ for which the tourist will always be able to visit at least $k$ cities? During the route, he can return to the cities he has already visited. [i]Proposed by Bogdan Rublov[/i]

2021-IMOC, C4

There is a city with many houses, where the houses are connected by some two-way roads. It is known that for any two houses $A,B$, there is exactly one house $C$ such that both $A,B$ are connected to $C$. Show that for any two houses not connected directly by a road, they have the same number of roads adjacent to them. [i]ST[/i]

2017 HMIC, 4

Let $G$ be a weighted bipartite graph $A \cup B$, with $|A| = |B| = n$. In other words, each edge in the graph is assigned a positive integer value, called its [i]weight.[/i] Also, define the weight of a perfect matching in $G$ to be the sum of the weights of the edges in the matching. Let $G'$ be the graph with vertex set $A \cup B$, and (which) contains the edge $e$ if and only if $e$ is part of some minimum weight perfect matching in $G$. Show that all perfect matchings in $G'$ have the same weight.

2011 Turkey Junior National Olympiad, 4

Each student chooses $1$ math problem and $1$ physics problem among $20$ math problems and $11$ physics problems. No same pair of problem is selected by two students. And at least one of the problems selected by any student is selected by at most one other student. At most how many students are there?

2023 China Team Selection Test, P7

Given the integer $n\geq 2$ and a integer ${a}$, which is coprime with ${n}$. A country has ${n}$ islands $D_1$, $D_2$, $\cdots$, $D_n$. For any $1\leq i\neq j\leq n$, there is a one-way ferry $D_i$ to $D_j$ if and only if $ij\equiv ia\pmod n$. A tourist can initially fly to any of the islands, and then he can only take a one-way ferry. What is the maximum number of islands he can visit? [i]Created by Zhenhua Qu[/i]

2011 ELMO Shortlist, 7

Let $T$ be a tree. Prove that there is a constant $c>0$ (independent of $n$) such that every graph with $n$ vertices that does not contain a subgraph isomorphic to $T$ has at most $cn$ edges. [i]David Yang.[/i]