Found problems: 242
2018 AMC 10, 10
In the rectangular parallelpiped shown, $AB = 3, BC= 1,$ and $CG = 2.$ Point $M$ is the midpoint of $\overline{FG}$. What is the volume of the rectangular pyramid with base $BCHE$ and apex $M$?
[asy]
size(250);
defaultpen(fontsize(10pt));
pair A =origin;
pair B = (4.75,0);
pair E1=(0,3);
pair F = (4.75,3);
pair G = (5.95,4.2);
pair C = (5.95,1.2);
pair D = (1.2,1.2);
pair H= (1.2,4.2);
pair M = ((4.75+5.95)/2,3.6);
draw(E1--M--H--E1--A--B--E1--F--B--M--C--G--H);
draw(B--C);
draw(F--G);
draw(A--D--H--C--D,dashed);
label("$A$",A,SW);
label("$B$",B,SE);
label("$C$",C,E);
label("$D$",D,W);
label("$E$",E1,W);
label("$F$",F,SW);
label("$G$",G,NE);
label("$H$",H,NW);
label("$M$",M,N);
dot(A);
dot(B);
dot(E1);
dot(F);
dot(G);
dot(C);
dot(D);
dot(H);
dot(M);
label("3",A/2+B/2,S);
label("2",C/2+G/2,E);
label("1",C/2+B/2,SE);[/asy]
$\textbf{(A) } 1 \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{5}{3} \qquad \textbf{(E) } 2$
2001 German National Olympiad, 6 (11)
In a pyramid $SABCD$ with the base $ABCD$ the triangles $ABD$ and $BCD$ have equal areas. Points $M,N,P,Q$ are the midpoints of the edges $AB,AD,SC,SD$ respectively. Find the ratio between the volumes of the pyramids $SABCD$ and $MNPQ$.
1991 Turkey Team Selection Test, 3
Let $U$ be the sum of lengths of sides of a tetrahedron (triangular pyramid) with vertices $O,A,B,C$. Let $V$ be the volume of the convex shape whose vertices are the midpoints of the sides of the tetrahedron. Show that $V\leq \frac{(U-|OA|-|BC| )(U-|OB|-|AC| )(U-|OC|-|AB| )}{(2^{7} \cdot 3)}$.
2018 Moscow Mathematical Olympiad, 2
There is tetrahedron and square pyramid, both with all edges equal $1$. Show how to cut them into several parts and glue together from these parts a cube (without voids and cracks, all parts must be used)
1972 IMO Longlists, 5
Given a pyramid whose base is an $n$-gon inscribable in a circle, let $H$ be the projection of the top vertex of the pyramid to its base. Prove that the projections of $H$ to the lateral edges of the pyramid lie on a circle.
2019 IOM, 5
We are given a convex four-sided pyramid with apex $S$ and base face $ABCD$ such that the pyramid has an inscribed sphere (i.e., it contains a sphere which is tangent to each race). By making cuts along the edges $SA,SB,SC,SD$ and rotating the faces $SAB,SBC,SCD,SDA$ outwards into the plane $ABCD$, we unfold the pyramid into the polygon $AKBLCMDN$ as shown in the figure. Prove that $K,L,M,N$ are concyclic.
[i] Tibor Bakos and Géza Kós [/i]
2000 ITAMO, 3
A pyramid with the base $ABCD$ and the top $V$ is inscribed in a sphere. Let $AD = 2BC$ and let the rays $AB$ and $DC$ intersect in point $E$. Compute the ratio of the volume of the pyramid $VAED$ to the volume of the pyramid $VABCD$.
Kyiv City MO 1984-93 - geometry, 1992.11.5
The base of the pyramid is a triangle $ABC$, in which $\angle ACB= 30^o$, and the length of the median from the vertex $B$ is twice less than the side $AC$ and is equal to $\alpha$ . All side edges of the pyramid are inclined to the plane of the base at an angle $a$. Determine the cross-sectional area of the pyramid with a plane passing through the vertex $B$ parallel to the edge $AD$ and inclined to the plane of the base at an angle of $\beta$,
1989 AMC 8, 23
An artist has $14$ cubes, each with an edge of $1$ meter. She stands them on the ground to form a sculpture as shown. She then paints the exposed surface of the sculpture. How many square meters does she paint?
$\text{(A)}\ 21 \qquad \text{(B)}\ 24 \qquad \text{(C)}\ 33 \qquad \text{(D)}\ 37 \qquad \text{(E)}\ 42$
[asy]
draw((0,0)--(2.35,-.15)--(2.44,.81)--(.09,.96)--cycle);
draw((.783333333,-.05)--(.873333333,.91)--(1.135,1.135));
draw((1.566666667,-.1)--(1.656666667,.86)--(1.89,1.1));
draw((2.35,-.15)--(4.3,1.5)--(4.39,2.46)--(2.44,.81));
draw((3,.4)--(3.09,1.36)--(2.61,1.4));
draw((3.65,.95)--(3.74,1.91)--(3.29,1.94));
draw((.09,.96)--(.76,1.49)--(.71,1.17)--(2.2,1.1)--(3.6,2.2)--(3.62,2.52)--(4.39,2.46));
draw((.76,1.49)--(.82,1.96)--(2.28,1.89)--(2.2,1.1));
draw((2.28,1.89)--(3.68,2.99)--(3.62,2.52));
draw((1.455,1.135)--(1.55,1.925)--(1.89,2.26));
draw((2.5,2.48)--(2.98,2.44)--(2.9,1.65));
draw((.82,1.96)--(1.55,2.6)--(1.51,2.3)--(2.2,2.26)--(2.9,2.8)--(2.93,3.05)--(3.68,2.99));
draw((1.55,2.6)--(1.59,3.09)--(2.28,3.05)--(2.2,2.26));
draw((2.28,3.05)--(2.98,3.59)--(2.93,3.05));
draw((1.59,3.09)--(2.29,3.63)--(2.98,3.59));
[/asy]
Ukrainian TYM Qualifying - geometry, I.5
The heights of a triangular pyramid intersect at one point. Prove that all flat angles at any vertex of the surface are either acute, or right, or obtuse.
2022 Adygea Teachers' Geometry Olympiad, 4
In a regular hexagonal pyramid $SABCDEF$, a plane is drawn through vertex $A$ and the midpoints of edges $SC$ and $CE$. Find the ratio in which this plane divides the volume of the pyramid.
1951 Moscow Mathematical Olympiad, 195
We have two concentric circles. A polygon is circumscribed around the smaller circle and is contained entirely inside the greater circle. Perpendiculars from the common center of the circles to the sides of the polygon are extended till they intersect the greater circle. Each of the points obtained is connected with the endpoints of the corresponding side of the polygon . When is the resulting star-shaped polygon the unfolding of a pyramid?
1984 Bulgaria National Olympiad, Problem 6
Let there be given a pyramid $SABCD$ whose base $ABCD$ is a parallelogram. Let $N$ be the midpoint of $BC$. A plane $\lambda$ intersects the lines $SC,SA,AB$ at points $P,Q,R$ respectively such that $\overline{CP}/\overline{CS}=\overline{SQ}/\overline{SA}=\overline{AR}/\overline{AB}$. A point $M$ on the line $SD$ is such that the line $MN$ is parallel to $\lambda$. Show that the locus of points $M$, when $\lambda$ takes all possible positions, is a segment of the length $\frac{\sqrt5}2SD$.
1996 AMC 12/AHSME, 28
On a $4 \times 4 \times 3$ rectangular parallelepiped, vertices $A$, $B$, and $C$ are adjacent to vertex $D$. The perpendicular distance from $D$ to the plane containing
$A$, $B$, and $C$ is closest to
$\text{(A)}\ 1.6 \qquad \text{(B)}\ 1.9 \qquad \text{(C)}\ 2.1 \qquad \text{(D)}\ 2.7 \qquad \text{(E)}\ 2.9$
2005 Denmark MO - Mohr Contest, 1
This figure is cut out from a sheet of paper. Folding the sides upwards along the dashed lines, one gets a (non-equilateral) pyramid with a square base. Calculate the area of the base.
[img]https://1.bp.blogspot.com/-lPpfHqfMMRY/XzcBIiF-n2I/AAAAAAAAMW8/nPs_mLe5C8srcxNz45Wg-_SqHlRAsAmigCLcBGAsYHQ/s0/2005%2BMohr%2Bp1.png[/img]
1995 Yugoslav Team Selection Test, Problem 3
Let $SABCD$ be a pyramid with the vertex $S$ whose all edges are equal. Points $M$ and $N$ on the edges $SA$ and $BC$ respectively are such that $MN$ is perpendicular to both $SA$ and $BC$. Find the ratios $SM:MA$ and $BN:NC$.
1998 Hong kong National Olympiad, 2
The underside of a pyramid is a convex nonagon , paint all the diagonals of the nonagon and all the ridges of the pyramid into white and black , prove : there exists a triangle ,the colour of its three sides are the same . ( PS:the sides of the nonagon is not painted. )
Kyiv City MO 1984-93 - geometry, 1989.10.5
The base of the quadrangular pyramid $SABCD$ is a quadrilateral $ABCD$, the diagonals of which are perpendicular. The apex of the pyramid is projected at intersection point $O$ of the diagonals of the base. Prove that the feet of the perpendiculars drawn from point $O$ to the side faces of the pyramid lie on one circle.
V Soros Olympiad 1998 - 99 (Russia), 11.2
Five edges of a triangular pyramid are equal to $1$. Find the sixth edge if it is known that the radius of the ball circumscribed about this pyramid is equal to $1$.
1975 Miklós Schweitzer, 12
Assume that a face of a convex polyhedron $ P$ has a common edge with every other face. Show that there exists a simple closed polygon that consists of edges of $ P$ and passes through all vertices.
[i]L .Lovasz[/i]
2013 All-Russian Olympiad, 2
The inscribed and exscribed sphere of a triangular pyramid $ABCD$ touch her face $BCD$ at different points $X$ and $Y$. Prove that the triangle $AXY$ is obtuse triangle.
2006 Moldova MO 11-12, 4
Let $ABCDE$ be a right quadrangular pyramid with vertex $E$ and height $EO$. Point $S$ divides this height in the ratio $ES: SO=m$. In which ratio does the plane $(ABC)$ divide the lateral area of the pyramid.
1935 Moscow Mathematical Olympiad, 003
The base of a pyramid is an isosceles triangle with the vertex angle $\alpha$. The pyramid’s lateral edges are at angle $\phi$ to the base. Find the dihedral angle $\theta$ at the edge connecting the pyramid’s vertex to that of angle $\alpha$.
1998 Dutch Mathematical Olympiad, 2
Let $TABCD$ be a pyramid with top vertex $T$, such that its base $ABCD$ is a square of side length 4. It is given that, among the triangles $TAB$, $TBC$, $TCD$ and $TDA$, one can find an isosceles triangle and a right-angled triangle. Find all possible values for the volume of the pyramid.
2014 Peru Iberoamerican Team Selection Test, P1
Circles $C_1$ and $C_2$ intersect at different points $A$ and $B$. The straight lines tangents to $C_1$ that pass through $A$ and $B$ intersect at $T$. Let $M$ be a point on $C_1$ that is out of $C_2$. The $MT$ line intersects $C_1$ at $C$ again, the $MA$ line intersects again to $C_2$ in $K$ and the line $AC$ intersects again to the circumference $C_2$ in $L$. Prove that the $MC$ line passes through the midpoint of the $KL$ segment.