This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2006 MOP Homework, 3

For positive integer $k$, let $p(k)$ denote the greatest odd divisor of $k$. Prove that for every positive integer $n$, $$\frac{2n}{3} < \frac{p(1)}{1}+ \frac{p(2)}{2}+... +\frac{ p(n)}{n}<\frac{2(n + 1)}{3}$$

2005 Junior Tuymaada Olympiad, 1

In each cell of the table $ 3 \times 3 $ there is one of the numbers $1, 2$ and $3$. Dima counted the sum of the numbers in each row and in each column. What is the greatest number of different sums he could get?