This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 583

1949 Miklós Schweitzer, 6

Let $ n$ and $ k$ be positive integers, $ n\geq k$. Prove that the greatest common divisor of the numbers $ \binom{n}{k},\binom{n\plus{}1}{k},\ldots,\binom{n\plus{}k}{k}$ is $ 1$.

1980 IMO, 1

Let $p(x)$ be a polynomial with integer coefficients such that $p(0)=p(1)=1$. We define the sequence $a_0, a_1, a_2, \ldots, a_n, \ldots$ that starts with an arbitrary nonzero integer $a_0$ and satisfies $a_{n+1}=p(a_n)$ for all $n \in \mathbb N\cup \{0\}$. Prove that $\gcd(a_i,a_j)=1$ for all $i,j \in \mathbb N \cup \{0\}$.

2010 IFYM, Sozopol, 5

Let n is a natural number,for which $\sqrt{1+12n^2}$ is a whole number.Prove that $2+2\sqrt{1+12n^2}$ is perfect square.

2022 Mexican Girls' Contest, 1

Determine all finite nonempty sets $S$ of positive integers satisfying \[ {i+j\over (i,j)}\qquad\mbox{is an element of S for all i,j in S}, \] where $(i,j)$ is the greatest common divisor of $i$ and $j$.

2011 NIMO Summer Contest, 7

Let $P(x) = x^2 - 20x - 11$. If $a$ and $b$ are natural numbers such that $a$ is composite, $\gcd(a, b) = 1$, and $P(a) = P(b)$, compute $ab$. Note: $\gcd(m, n)$ denotes the greatest common divisor of $m$ and $n$. [i]Proposed by Aaron Lin [/i]

2018 India Regional Mathematical Olympiad, 1

Let $ABC$ be a triangle with integer sides in which $AB<AC$. Let the tangent to the circumcircle of triangle $ABC$ at $A$ intersect the line $BC$ at $D$. Suppose $AD$ is also an integer. Prove that $\gcd(AB,AC)>1$.

2011 Romanian Master of Mathematics, 2

Determine all positive integers $n$ for which there exists a polynomial $f(x)$ with real coefficients, with the following properties: (1) for each integer $k$, the number $f(k)$ is an integer if and only if $k$ is not divisible by $n$; (2) the degree of $f$ is less than $n$. [i](Hungary) Géza Kós[/i]

2019 Dutch BxMO TST, 4

Do there exist a positive integer $k$ and a non-constant sequence $a_1, a_2, a_3, ...$ of positive integers such that $a_n = gcd(a_{n+k}, a_{n+k+1})$ for all positive integers $n$?

2007 China National Olympiad, 2

Show that: 1) If $2n-1$ is a prime number, then for any $n$ pairwise distinct positive integers $a_1, a_2, \ldots , a_n$, there exists $i, j \in \{1, 2, \ldots , n\}$ such that \[\frac{a_i+a_j}{(a_i,a_j)} \geq 2n-1\] 2) If $2n-1$ is a composite number, then there exists $n$ pairwise distinct positive integers $a_1, a_2, \ldots , a_n$, such that for any $i, j \in \{1, 2, \ldots , n\}$ we have \[\frac{a_i+a_j}{(a_i,a_j)} < 2n-1\] Here $(x,y)$ denotes the greatest common divisor of $x,y$.

2001 India IMO Training Camp, 2

A strictly increasing sequence $(a_n)$ has the property that $\gcd(a_m,a_n) = a_{\gcd(m,n)}$ for all $m,n\in \mathbb{N}$. Suppose $k$ is the least positive integer for which there exist positive integers $r < k < s$ such that $a_k^2 = a_ra_s$. Prove that $r | k$ and $k | s$.

2008 IMO Shortlist, 3

Let $ a_0$, $ a_1$, $ a_2$, $ \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $ \gcd (a_i, a_{i \plus{} 1}) > a_{i \minus{} 1}$. Prove that $ a_n\ge 2^n$ for all $ n\ge 0$. [i]Proposed by Morteza Saghafian, Iran[/i]

2020 Mexico National Olympiad, 5

A four-element set $\{a, b, c, d\}$ of positive integers is called [i]good[/i] if there are two of them such that their product is a mutiple of the greatest common divisor of the remaining two. For example, the set $\{2, 4, 6, 8\}$ is good since the greatest common divisor of $2$ and $6$ is $2$, and it divides $4\times 8=32$. Find the greatest possible value of $n$, such that any four-element set with elements less than or equal to $n$ is good. [i]Proposed by Victor and Isaías de la Fuente[/i]

2021-IMOC, N5

Find all sets $S$ of positive integers that satisfy all of the following. $1.$ If $a,b$ are two not necessarily distinct elements in $S$, then $\gcd(a,b)$, $ab$ are also in $S$. $2.$ If $m,n$ are two positive integers with $n\nmid m$, then there exists an element $s$ in $S$ such that $m^2\mid s$ and $n^2\nmid s$. $3.$ For any odd prime $p$, the set formed by moduloing all elements in $S$ by $p$ has size exactly $\frac{p+1}2$.

2013 Korea National Olympiad, 5

Find all functions $f : \mathbb{N} \rightarrow \mathbb{N} $ satisfying \[ f(mn) = \operatorname{lcm} (m,n) \cdot \gcd( f(m), f(n) ) \] for all positive integer $m,n$.

2016 Switzerland Team Selection Test, Problem 5

For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.

2016 Brazil Team Selection Test, 2

For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2016$ good partitions. PS. [url=https://artofproblemsolving.com/community/c6h1268855p6622233]2015 ISL C3 [/url] has 2015 instead of 2016

2016 Indonesia TST, 5

For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.

1997 Pre-Preparation Course Examination, 1

Let $n$ be a positive integer. Prove that there exist polynomials$f(x)$and $g(x$) with integer coefficients such that \[f(x)\left(x + 1 \right)^{2^n}+ g(x) \left(x^{2^n}+ 1 \right) = 2.\]

2010 China Northern MO, 7

Find all positive integers $x, y, z$ that satisfy the conditions: $$[x,y,z] =(x,y)+(y,z) + (z,x), x\le y\le z, (x,y,z) = 1$$ The symbols $[m,n]$ and $(m,n)$ respectively represent positive integers, the least common multiple and the greatest common divisor of $m$ and $n$.

2023 Indonesia MO, 5

Let $a$ and $b$ be positive integers such that $\text{gcd}(a, b) + \text{lcm}(a, b)$ is a multiple of $a+1$. If $b \le a$, show that $b$ is a perfect square.

2021 China Team Selection Test, 6

Given positive integer $n$ and $r$ pairwise distinct primes $p_1,p_2,\cdots,p_r.$ Initially, there are $(n+1)^r$ numbers written on the blackboard: $p_1^{i_1}p_2^{i_2}\cdots p_r^{i_r} (0 \le i_1,i_2,\cdots,i_r \le n).$ Alice and Bob play a game by making a move by turns, with Alice going first. In Alice's round, she erases two numbers $a,b$ (not necessarily different) and write $\gcd(a,b)$. In Bob's round, he erases two numbers $a,b$ (not necessarily different) and write $\mathrm{lcm} (a,b)$. The game ends when only one number remains on the blackboard. Determine the minimal possible $M$ such that Alice could guarantee the remaining number no greater than $M$, regardless of Bob's move.

2013 National Olympiad First Round, 26

What is the maximum number of primes that divide both the numbers $n^3+2$ and $(n+1)^3+2$ where $n$ is a positive integer? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ 0 \qquad\textbf{(E)}\ \text{None of above} $

2012 Online Math Open Problems, 4

Let $\text{lcm} (a,b)$ denote the least common multiple of $a$ and $b$. Find the sum of all positive integers $x$ such that $x\le 100$ and $\text{lcm}(16,x) = 16x$. [i]Ray Li.[/i]

2006 Irish Math Olympiad, 4

Let $n$ be a positive integer. Find the greatest common divisor of the numbers $\binom{2n}{1},\binom{2n}{3},\binom{2n}{5},...,\binom{2n}{2n-1}$.

2010 China Team Selection Test, 2

Given integer $a_1\geq 2$. For integer $n\geq 2$, define $a_n$ to be the smallest positive integer which is not coprime to $a_{n-1}$ and not equal to $a_1,a_2,\cdots, a_{n-1}$. Prove that every positive integer except 1 appears in this sequence $\{a_n\}$.