This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 583

2003 India IMO Training Camp, 2

Find all triples $(a,b,c)$ of positive integers such that (i) $a \leq b \leq c$; (ii) $\text{gcd}(a,b,c)=1$; and (iii) $a^3+b^3+c^3$ is divisible by each of the numbers $a^2b, b^2c, c^2a$.

PEN A Problems, 68

Suppose that $S=\{a_{1}, \cdots, a_{r}\}$ is a set of positive integers, and let $S_{k}$ denote the set of subsets of $S$ with $k$ elements. Show that \[\text{lcm}(a_{1}, \cdots, a_{r})=\prod_{i=1}^{r}\prod_{s\in S_{i}}\gcd(s)^{\left((-1)^{i}\right)}.\]

2019-2020 Fall SDPC, 1

Show that there exists some [b]positive[/b] integer $k$ with $$\gcd(2012,2020)=\gcd(2012+k,2020)$$$$=\gcd(2012,2020+k)=\gcd(2012+k,2020+k).$$

2018 AMC 10, 23

How many ordered pairs $(a, b)$ of positive integers satisfy the equation $$a\cdot b + 63 = 20\cdot \text{lcm}(a, b) + 12\cdot\text{gcd}(a,b),$$ where $\text{gcd}(a,b)$ denotes the greatest common divisor of $a$ and $b$, and $\text{lcm}(a,b)$ denotes their least common multiple? $\textbf{(A)}\ 0\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 8$

2014 Cono Sur Olympiad, 1

Numbers $1$ through $2014$ are written on a board. A valid operation is to erase two numbers $a$ and $b$ on the board and replace them with the greatest common divisor and the least common multiple of $a$ and $b$. Prove that, no matter how many operations are made, the sum of all the numbers that remain on the board is always larger than $2014$ $\times$ $\sqrt[2014]{2014!}$

1985 AIME Problems, 13

The numbers in the sequence 101, 104, 109, 116, $\dots$ are of the form $a_n = 100 + n^2$, where $n = 1$, 2, 3, $\dots$. For each $n$, let $d_n$ be the greatest common divisor of $a_n$ and $a_{n + 1}$. Find the maximum value of $d_n$ as $n$ ranges through the positive integers.

2020 Mediterranean Mathematics Olympiad, 1

Determine all integers $m\ge2$ for which there exists an integer $n\ge1$ with $\gcd(m,n)=d$ and $\gcd(m,4n+1)=1$. [i]Proposed by Gerhard Woeginger, Austria[/i]

2015 Indonesia MO Shortlist, N7

For every natural number $a$ and $b$, define the notation $[a,b]$ as the least common multiple of $a $ and $b$ and the notation $(a,b)$ as the greatest common divisor of $a$ and $b$. Find all $n \in \mathbb{N}$ that satisfies \[ 4 \sum_{k=1}^{n} [n,k] = 1 + \sum_{k=1}^{n} (n,k) + 2n^2 \sum_{k=1}^{n} \frac{1}{(n,k)} \]

2013 Princeton University Math Competition, 6

Let $d$ be the greatest common divisor of $2^{30^{10}}-2$ and $2^{30^{45}}-2$. Find the remainder when $d$ is divided by $2013$.

2004 South africa National Olympiad, 1

Let $a=1111\dots1111$ and $b=1111\dots1111$ where $a$ has forty ones and $b$ has twelve ones. Determine the greatest common divisor of $a$ and $b$.

1984 Austrian-Polish Competition, 2

Let $A$ be the set of four-digit natural numbers having exactly two distinct digits, none of which is zero. Interchanging the two digits of $n\in A$ yields a number $f (n) \in A$ (for instance, $f (3111) = 1333$). Find those $n \in A$ with $n > f (n)$ for which $gcd(n, f (n))$ is the largest possible.

2013 Finnish National High School Mathematics Competition, 2

In a particular European city, there are only $7$ day tickets and $30$ day tickets to the public transport. The former costs $7.03$ euro and the latter costs $30$ euro. Aina the Algebraist decides to buy at once those tickets that she can travel by the public transport the whole three year (2014-2016, 1096 days) visiting in the city. What is the cheapest solution?

2018 Switzerland - Final Round, 2

Let $a, b$ and $c$ be natural numbers. Determine the smallest value that the following expression can take: $$\frac{a}{gcd\,\,(a + b, a - c)} + \frac{b}{gcd\,\,(b + c, b - a)} + \frac{c}{gcd\,\,(c + a, c - b)}.$$ . Remark: $gcd \,\, (6, 0) = 6$ and $gcd\,\,(3, -6) = 3$.

2009 Princeton University Math Competition, 8

Find the largest positive integer $k$ such that $\phi ( \sigma ( 2^k)) = 2^k$. ($\phi(n)$ denotes the number of positive integers that are smaller than $n$ and relatively prime to $n$, and $\sigma(n)$ denotes the sum of divisors of $n$). As a hint, you are given that $641|2^{32}+1$.

2001 239 Open Mathematical Olympiad, 1

Find all triples of natural numbers $ a $, $ b $, $ c $ such that $$ \gcd (a ^ 2, b ^ 2) + \gcd (a, bc) +\gcd (b, ac) +\gcd (c, ab) = 239 ^ 2 = ab + c . $$

2016 India IMO Training Camp, 3

For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.

2004 Czech-Polish-Slovak Match, 6

On the table there are $k \ge 3$ heaps of $1, 2, \dots , k$ stones. In the first step, we choose any three of the heaps, merge them into a single new heap, and remove $1$ stone from this new heap. Thereafter, in the $i$-th step ($i \ge 2$) we merge some three heaps containing more than $i$ stones in total and remove $i$ stones from the new heap. Assume that after a number of steps a single heap of $p$ stones remains on the table. Show that the number $p$ is a perfect square if and only if so are both $2k + 2$ and $3k + 1$. Find the least $k$ with this property.

2004 Postal Coaching, 2

(a) Find all triples $(x,y,z)$ of positive integers such that $xy \equiv 2 (\bmod{z})$ , $yz \equiv 2 (\bmod{x})$ and $zx \equiv 2 (\bmod{y} )$ (b) Let $n \geq 1$ be an integer. Give an algoritm to determine all triples $(x,y,z)$ such that '2' in part (a) is replaced by 'n' in all three congruences.

2014 Contests, 3

Let $a,b$ be natural numbers with $ab>2$. Suppose that the sum of their greatest common divisor and least common multiple is divisble by $a+b$. Prove that the quotient is at most $\frac{a+b}{4}$. When is this quotient exactly equal to $\frac{a+b}{4}$

2008 Czech and Slovak Olympiad III A, 3

Find all pairs of integers $(a,b)$ such that $a^2+ab+1\mid b^2+ab+a+b-1$.

1995 All-Russian Olympiad, 5

The sequence $a_1, a_2, ...$ of natural numbers satisfies $GCD(a_i, a_j)=GCD(i, j)$ for all $i \neq j$. Prove that $a_i=i$ for all $i$.

1972 USAMO, 1

The symbols $ (a,b,\ldots,g)$ and $ [a,b,\ldots,g]$ denote the greatest common divisor and least common multiple, respectively, of the positive integers $ a,b,\ldots,g$. For example, $ (3,6,18)\equal{}3$ and $ [6,15]\equal{}30$. Prove that \[ \frac{[a,b,c]^2}{[a,b][b,c][c,a]}\equal{}\frac{(a,b,c)^2}{(a,b)(b,c)(c,a)}.\]

2005 Brazil National Olympiad, 6

Given positive integers $a,c$ and integer $b$, prove that there exists a positive integer $x$ such that \[ a^x + x \equiv b \pmod c, \] that is, there exists a positive integer $x$ such that $c$ is a divisor of $a^x + x - b$.

2021 USAJMO, 5

A finite set $S$ of positive integers has the property that, for each $s \in S,$ and each positive integer divisor $d$ of $s$, there exists a unique element $t \in S$ satisfying $\text{gcd}(s, t) = d$. (The elements $s$ and $t$ could be equal.) Given this information, find all possible values for the number of elements of $S$.

2004 India Regional Mathematical Olympiad, 3

Let $\alpha$ and $\beta$ be the roots of the equation $x^2 + mx -1 = 0$ where $m$ is an odd integer. Let $\lambda _n = \alpha ^n + \beta ^n , n \geq 0$ Prove that (A) $\lambda _n$ is an integer (B) gcd ( $\lambda _n , \lambda_{n+1}$) = 1 .