This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2019 Jozsef Wildt International Math Competition, W. 7

If $$\Omega_n=\sum \limits_{k=1}^n \left(\int \limits_{-\frac{1}{k}}^{\frac{1}{k}}(2x^{10} + 3x^8 + 1)\cos^{-1}(kx)dx\right)$$Then find $$\Omega=\lim \limits_{n\to \infty}\left(\Omega_n-\pi H_n\right)$$

2019 Jozsef Wildt International Math Competition, W. 8

Let $(a_n)_{n\geq 1}$ be a positive real sequence given by $a_n=\sum \limits_{k=1}^n \frac{1}{k}$. Compute $$\lim \limits_{n \to \infty}e^{-2a_n} \sum \limits_{k=1}^n \left \lfloor \left(\sqrt[2k]{k!}+\sqrt[2(k+1)]{(k+1)!}\right)^2 \right \rfloor$$where we denote by $\lfloor x\rfloor$ the integer part of $x$.