This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2021 Indonesia MO, 7

Given $\triangle ABC$ with circumcircle $\ell$. Point $M$ in $\triangle ABC$ such that $AM$ is the angle bisector of $\angle BAC$. Circle with center $M$ and radius $MB$ intersects $\ell$ and $BC$ at $D$ and $E$ respectively, $(B \not= D, B \not= E)$. Let $P$ be the midpoint of arc $BC$ in $\ell$ that didn't have $A$. Prove that $AP$ angle bisector of $\angle DPE$ if and only if $\angle B = 90^{\circ}$.