This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2000 Bosnia and Herzegovina Team Selection Test, 2

Let $S$ be a point inside triangle $ABC$ and let lines $AS$, $BS$ and $CS$ intersect sides $BC$, $CA$ and $AB$ in points $X$, $Y$ and $Z$, respectively. Prove that $$\frac{BX\cdot CX}{AX^2}+\frac{CY\cdot AY}{BY^2}+\frac{AZ\cdot BZ}{CZ^2}=\frac{R}{r}-1$$ iff $S$ is incenter of $ABC$