This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2021 Iranian Geometry Olympiad, 3

Consider a triangle $ABC$ with altitudes $AD, BE$, and $CF$, and orthocenter $H$. Let the perpendicular line from $H$ to $EF$ intersects $EF, AB$ and $AC$ at $P, T$ and $L$, respectively. Point $K$ lies on the side $BC$ such that $BD=KC$. Let $\omega$ be a circle that passes through $H$ and $P$, that is tangent to $AH$. Prove that circumcircle of triangle $ATL$ and $\omega$ are tangent, and $KH$ passes through the tangency point.