This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1999 Bosnia and Herzegovina Team Selection Test, 6

It is given polynomial $$P(x)=x^4+3x^3+3x+p, (p \in \mathbb{R})$$ $a)$ Find $p$ such that there exists polynomial with imaginary root $x_1$ such that $\mid x_1 \mid =1$ and $2Re(x_1)=\frac{1}{2}\left(\sqrt{17}-3\right)$ $b)$ Find all other roots of polynomial $P$ $c)$ Prove that does not exist positive integer $n$ such that $x_1^n=1$