This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2003 IMO, 1

Let $A$ be a $101$-element subset of the set $S=\{1,2,\ldots,1000000\}$. Prove that there exist numbers $t_1$, $t_2, \ldots, t_{100}$ in $S$ such that the sets \[ A_j=\{x+t_j\mid x\in A\},\qquad j=1,2,\ldots,100 \] are pairwise disjoint.

2003 IMO Shortlist, 1

Let $A$ be a $101$-element subset of the set $S=\{1,2,\ldots,1000000\}$. Prove that there exist numbers $t_1$, $t_2, \ldots, t_{100}$ in $S$ such that the sets \[ A_j=\{x+t_j\mid x\in A\},\qquad j=1,2,\ldots,100 \] are pairwise disjoint.

2020 Iran MO (3rd Round), 1

$1)$. Prove a graph with $2n$ vertices and $n+2$ edges has an independent set of size $n$ (there are $n$ vertices such that no two of them are adjacent ). $2)$.Find the number of graphs with $2n$ vertices and $n+3$ edges , such that among any $n$ vertices there is an edge connecting two of them

2022 Korea Winter Program Practice Test, 3

Let $n\ge 2$ be a positive integer. $S$ is a set of $2n$ airports. For two arbitrary airports $A,B$, if there is an airway from $A$ to $B$, then there is an airway from $B$ to $A$. Suppose that $S$ has only one independent set of $n$ airports. Let the independent set $X$. Prove that there exists an airport $P\in S\setminus X$ which satisfies following condition. [b]Condition[/b] : For two arbitrary distinct airports $A,B\in S\setminus \{P\}$, if there exists a path connecting $A$ and $B$, then there exists a path connecting $A$ and $B$ which does not pass $P$.