This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1993 All-Russian Olympiad Regional Round, 11.8

There are $ 1993$ towns in a country, and at least $ 93$ roads going out of each town. It's known that every town can be reached from any other town. Prove that this can always be done with no more than $ 62$ transfers.

1978 All Soviet Union Mathematical Olympiad, 267

Given $a_1, a_2, ... , a_n$. Define $$b_k = \frac{a_1 + a_2 + ... + a_k}{k}$$ for $1 \le k\le n.$ Let $$C = (a_1 - b_1)^2 + (a_2 - b_2)^2 + ... + (a_n - b_n)^2, D = (a_1 - b_n)^2 + (a_2 - b_n)^2 + ... + (a_n - b_n)^2$$ Prove that $C \le D \le 2C$.

2025 Azerbaijan Junior NMO, 5

For positive real numbers $x;y;z$ satisfying $0<x,y,z<2$, find the biggest value the following equation could acquire: $$(2x-yz)(2y-zx)(2z-xy)$$

1999 China Team Selection Test, 1

For non-negative real numbers $x_1, x_2, \ldots, x_n$ which satisfy $x_1 + x_2 + \cdots + x_n = 1$, find the largest possible value of $\sum_{j = 1}^{n} (x_j^{4} - x_j^{5})$.

2017 Mediterranean Mathematics Olympiad, Problem 4

Tags: inequalities
Let $x,y,z$ and $a,b,c$ be positive real numbers with $a+b+c=1$. Prove that $$\left(x^2+y^2+z^2\right) \left( \frac{a^3}{x^2+2y^2} + \frac{b^3}{y^2+2z^2} + \frac{c^3}{z^2+2x^2} \right) \ge\frac19.$$

2005 China Team Selection Test, 3

Let $a,b,c,d >0$ and $abcd=1$. Prove that: \[ \frac{1}{(1+a)^2}+\frac{1}{(1+b)^2}+\frac{1}{(1+c)^2}+\frac{1}{(1+d)^2} \geq 1 \]

1997 APMO, 1

Tags: inequalities
Given: \[ S = 1 + \frac{1}{1 + \frac{1}{3}} + \frac{1}{1 + \frac{1}{3} + \frac{1} {6}} + \cdots + \frac{1}{1 + \frac{1}{3} + \frac{1}{6} + \cdots + \frac{1} {1993006}} \] where the denominators contain partial sums of the sequence of reciprocals of triangular numbers (i.e. $k=\frac{n(n+1)}{2}$ for $n = 1$, $2$, $\ldots$,$1996$). Prove that $S>1001$.

2008 239 Open Mathematical Olympiad, 5

In the triangle $ABC$, $\angle{B} = 120^{\circ}$, point $M$ is the midpoint of side $AC$. On the sides $AB$ and $BC$, the points $K$ and $L$ are chosen such that $KL \parallel AC$. Prove that $MK + ML \geq MA$.

2018 Ramnicean Hope, 3

Consider a complex number whose affix in the complex plane is situated on the first quadrant of the unit circle centered at origin. Then, the following inequality holds. $$ \sqrt{2} +\sqrt{2+\sqrt{2}} \le |1+z|+|1+z^2|+|1+z^4|\le 6 $$ [i]Costică Ambrinoc[/i]

2019 Jozsef Wildt International Math Competition, W. 50

Tags: inequalities
Let $x$, $y$, $z > 0$, $\lambda \in (-\infty, 0) \cup (1,+\infty)$ such that $x + y + z = 1$. Then$$\sum \limits_{cyc} x^{\lambda}y^{\lambda}\sum \limits_{cyc}\frac{1}{(x+y)^{2\lambda}}\geq 9\left(\frac{1}{4}-\frac{1}{9}\sum \limits_{cyc}\frac{1}{(x+1)^2} \right)^{\lambda}$$

2009 Poland - Second Round, 1

Let $a_1\ge a_2\ge \ldots \ge a_n>0$ be $n$ reals. Prove the inequality \[a_1a_2\ldots a_{n-1}+(2a_2-a_1)(2a_3-a_2)\ldots (2a_n-a_{n-1})\ge 2a_2a_3\ldots a_n\]

2023 India National Olympiad, 5

Euler marks $n$ different points in the Euclidean plane. For each pair of marked points, Gauss writes down the number $\lfloor \log_2 d \rfloor$ where $d$ is the distance between the two points. Prove that Gauss writes down less than $2n$ distinct values. [i]Note:[/i] For any $d>0$, $\lfloor \log_2 d\rfloor$ is the unique integer $k$ such that $2^k\le d<2^{k+1}$. [i]Proposed by Pranjal Srivastava[/i]

2002 Poland - Second Round, 3

A positive integer $ n$ is given. In an association consisting of $ n$ members work $ 6$ commissions. Each commission contains at least $ \large \frac{n}{4}$ persons. Prove that there exist two commissions containing at least $ \large \frac{n}{30}$ persons in common.

Gheorghe Țițeica 2025, P2

Tags: inequalities
Let $a,b,c$ be three positive real numbers with $ab+bc+ca=4$. Find the minimum value of the expression $$E(a,b,c)=\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}-(a-b)^2.$$

1990 Swedish Mathematical Competition, 3

Find all $a, b$ such that $\sin x + \sin a\ge b \cos x$ for all $x$.

2010 IFYM, Sozopol, 4

Tags: inequalities
For $x,y,z > 0$ and $xyz=1$, prove that \[\frac{x^{9}+y^{9}}{x^{6}+x^{3}y^{3}+y^{6}}+\frac{x^{9}+z^{9}}{x^{6}+x^{3}z^{3}+z^{6}}+\frac{y^{9}+z^{9}}{y^{6}+y^{3}z^{3}+z^{6}}\geq 2\]

2014 Contests, 2

Define a [i]beautiful number[/i] to be an integer of the form $a^n$, where $a\in\{3,4,5,6\}$ and $n$ is a positive integer. Prove that each integer greater than $2$ can be expressed as the sum of pairwise distinct beautiful numbers. [i]Proposed by Matthew Babbitt[/i]

2013 ELMO Shortlist, 6

Tags: inequalities
Let $a, b, c$ be positive reals such that $a+b+c=3$. Prove that \[18\sum_{\text{cyc}}\frac{1}{(3-c)(4-c)}+2(ab+bc+ca)\ge 15. \][i]Proposed by David Stoner[/i]

2007 CHKMO, 4

Tags: inequalities
Let a_1, a_2, a_3,... be a sequence of positive numbers. If there exists a positive number M such that for n = 1,2,3,..., $a^{2}_{1}+a^{2}_{2}+...+a^{2}_{n}< Ma^{2}_{n+1}$ then prove that there exist a positive number M' such that for every n = 1,2,3,..., $a_{1}+a_{2}+...+a_{n}< M'a_{n+1}$

2006 Silk Road, 2

Tags: inequalities
For positive $a,b,c$, such that $abc=1$ prove the inequality: $4(\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{c}}+\sqrt[3]{\frac{c}{a}}) \leq 3(2+a+b+c+\frac{1}{a}+\frac{1}{b}+ \frac{1}{c})^{\frac{2}{3}}$.

2006 India National Olympiad, 6

(a) Prove that if $n$ is a integer such that $n \geq 4011^2$ then there exists an integer $l$ such that \[ n < l^2 < (1 + \frac{1}{{2005}})n . \] (b) Find the smallest positive integer $M$ for which whenever an integer $n$ is such that $n \geq M$ then there exists an integer $l$ such that \[ n < l^2 < (1 + \frac{1}{{2005}})n . \]

2014 South East Mathematical Olympiad, 4

Tags: inequalities
Let $x_1,x_2,\cdots,x_n$ be non-negative real numbers such that $x_ix_j\le 4^{-|i-j|}$ $(1\le i,j\le n)$. Prove that\[x_1+x_2+\cdots+x_n\le \frac{5}{3}.\]

2012 Turkey Team Selection Test, 3

For all positive real numbers $a, b, c$ satisfying $ab+bc+ca \leq 1,$ prove that \[ a+b+c+\sqrt{3} \geq 8abc \left(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right) \]

2012 China Second Round Olympiad, 7

Find the sum of all integers $n$ satisfying the following inequality: \[\frac{1}{4}<\sin\frac{\pi}{n}<\frac{1}{3}.\]

2007 Romania Team Selection Test, 2

Tags: inequalities
Prove that for $n, p$ integers, $n \geq 4$ and $p \geq 4$, the proposition $\mathcal{P}(n, p)$ \[\sum_{i=1}^{n}\frac{1}{{x_{i}}^{p}}\geq \sum_{i=1}^{n}{x_{i}}^{p}\quad \textrm{for}\quad x_{i}\in \mathbb{R}, \quad x_{i}> 0 , \quad i=1,\ldots,n \ ,\quad \sum_{i=1}^{n}x_{i}= n,\] is false. [i]Dan Schwarz[/i] [hide="Remark"]In the competition, the students were informed (fact that doesn't actually relate to the problem's solution) that the propositions $\mathcal{P}(4, 3)$ are $\mathcal{P}(3, 4)$ true.[/hide]