This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2011 Gheorghe Vranceanu, 2

Let $ a\ge 3 $ and a polynom $ P. $ Show that: $$ \max_{1\le k\le \text{grad} P} \left| a^{k-1}-P(k-1) \right| \ge 1 $$

2006 USAMO, 2

For a given positive integer $k$ find, in terms of $k$, the minimum value of $N$ for which there is a set of $2k + 1$ distinct positive integers that has sum greater than $N$ but every subset of size $k$ has sum at most $\tfrac{N}{2}.$

2005 Germany Team Selection Test, 2

Let $ n$ be a positive integer such that $ n\geq 3$. Let $ a_1$, $ a_2$, ..., $ a_n$ and $ b_1$, $ b_2$, ..., $ b_n$ be $ 2n$ positive real numbers satisfying the equations \[ a_1 \plus{} a_2 \plus{} ... \plus{} a_n \equal{} 1, \quad \text{and} \quad b_1^2 \plus{} b_2^2 \plus{} ... \plus{} b_n^2 \equal{} 1.\] Prove the inequality \[a_1\left(b_1 \plus{} a_2\right) \plus{} a_2\left(b_2 \plus{} a_3\right) \plus{} ... \plus{} a_{n \minus{} 1}\left(b_{n \minus{} 1} \plus{} a_n\right) \plus{} a_n\left(b_n \plus{} a_1\right) < 1.\]

2002 Baltic Way, 2

Tags: inequalities
Let $a,b,c,d$ be real numbers such that \[a+b+c+d=-2\] \[ab+ac+ad+bc+bd+cd=0\] Prove that at least one of the numbers $a,b,c,d$ is not greater than $-1$.

2006 AMC 12/AHSME, 21

Let \[ S_1 \equal{} \{ (x,y)\ | \ \log_{10} (1 \plus{} x^2 \plus{} y^2)\le 1 \plus{} \log_{10}(x \plus{} y)\} \]and \[ S_2 \equal{} \{ (x,y)\ | \ \log_{10} (2 \plus{} x^2 \plus{} y^2)\le 2 \plus{} \log_{10}(x \plus{} y)\}. \]What is the ratio of the area of $ S_2$ to the area of $ S_1$? $ \textbf{(A) } 98\qquad \textbf{(B) } 99\qquad \textbf{(C) } 100\qquad \textbf{(D) } 101\qquad \textbf{(E) } 102$

2010 BMO TST, 2

Let $ a\geq 2$ be a real number; with the roots $ x_{1}$ and $ x_{2}$ of the equation $ x^2\minus{}ax\plus{}1\equal{}0$ we build the sequence with $ S_{n}\equal{}x_{1}^n \plus{} x_{2}^n$. [b]a)[/b]Prove that the sequence $ \frac{S_{n}}{S_{n\plus{}1}}$, where $ n$ takes value from $ 1$ up to infinity, is strictly non increasing. [b]b)[/b]Find all value of $ a$ for the which this inequality hold for all natural values of $ n$ $ \frac{S_{1}}{S_{2}}\plus{}\cdots \plus{}\frac{S_{n}}{S_{n\plus{}1}}>n\minus{}1$

1999 Czech and Slovak Match, 1

Leta,b,c are postive real numbers,proof that $ \frac{a}{b\plus{}2c}\plus{}\frac{b}{c\plus{}2a}\plus{}\frac{c}{a\plus{}2b}\geq1$

1984 National High School Mathematics League, 2

Tags: inequalities
Which figure's shaded part satisfies the inequality $\log_x(\log_x y^2)>0$? [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvNi83LzY2ZWE5OGJmZjlhNzI1NDM5ZjdiNjZmYTcyZTFkMzEzZjUzMzk5LnBuZw==&rn=NGRkLnBuZw==[/img]

2014 HMNT, 3

The side lengths of a triangle are distinct positive integers. One of the side lengths is a multiple of $42,$ and another is a multiple of $72$. What is the minimum possible length of the third side?

2008 China Team Selection Test, 2

Tags: inequalities
For a given integer $ n\geq 2,$ determine the necessary and sufficient conditions that real numbers $ a_{1},a_{2},\cdots, a_{n},$ not all zero satisfy such that there exist integers $ 0<x_{1}<x_{2}<\cdots<x_{n},$ satisfying $ a_{1}x_{1}\plus{}a_{2}x_{2}\plus{}\cdots\plus{}a_{n}x_{n}\geq 0.$

2014 ELMO Shortlist, 3

Let $a,b,c,d,e,f$ be positive real numbers. Given that $def+de+ef+fd=4$, show that \[ ((a+b)de+(b+c)ef+(c+a)fd)^2 \geq\ 12(abde+bcef+cafd). \][i]Proposed by Allen Liu[/i]

2019 Tuymaada Olympiad, 1

In a sequence $a_1, a_2, ..$ of real numbers the product $a_1a_2$ is negative, and to define $a_n$ for $n > 2$ one pair $(i, j)$ is chosen among all the pairs $(i, j), 1 \le i < j < n$, not chosen before, so that $a_i +a_j$ has minimum absolute value, and then $a_n$ is set equal to $a_i + a_j$ . Prove that $|a_i| < 1$ for some $i$.

2024 Regional Competition For Advanced Students, 1

Let $a$, $b$ and $c$ be real numbers larger than $1$. Prove the inequality $$\frac{ab}{c-1}+\frac{bc}{a - 1}+\frac{ca}{b -1} \ge 12.$$ When does equality hold? [i](Karl Czakler)[/i]

2015 Chile TST Ibero, 4

Let $x, y \in \mathbb{R}^+$. Prove that: \[ \left( 1 + \frac{1}{x} \right) \left( 1 + \frac{1}{y} \right) \geq \left( 1 + \frac{2}{x + y} \right)^2. \]

2005 Tuymaada Olympiad, 8

Tags: inequalities
Let $a,b,c$ be positive reals s.t. $a^2+b^2+c^2=1$. Prove the following inequality \[ \sum \frac{a}{a^3+bc} >3 . \] [i]Proposed by A. Khrabrov[/i]

2004 Federal Math Competition of S&M, 3

Tags: inequalities
If $a,b,c$ are positive numbers such that $abc = 1$, prove the inequality $\frac{1}{\sqrt{b+\frac{1}{a}+\frac{1}{2}}} + \frac{1}{\sqrt{c+\frac{1}{b}+\frac{1}{2}}} + \frac{1}{\sqrt{a+\frac{1}{c}+\frac{1}{2}}} \geq \sqrt{2}$

2011 Kurschak Competition, 2

Let $n$ be a positive integer. Denote by $a(n)$ the ways of expression $n=x_1+x_2+\dots$ where $x_1\leqslant x_2 \leqslant\dots$ are positive integers and $x_i+1$ is a power of $2$ for each $i$. Denote by $b(n)$ the ways of expression $n=y_1+y_2+\dots$ where $y_i$ is a positive integer and $2y_i\leqslant y_{i+1}$ for each $i$. Prove that $a(n)=b(n)$.

1990 Bundeswettbewerb Mathematik, 4

In the plane there is a worm of length 1. Prove that it can be always covered by means of half of a circular disk of diameter 1. [i]Note.[/i] Under a "worm", we understand a continuous curve. The "half of a circular disk" is a semicircle including its boundary.

1985 Poland - Second Round, 1

Inside the triangle $ABC$, the point $P$ is chosen. Let $ a, b, c $ be the lengths of the sides $ BC $, $ CA $, $ AB $, respectively, and $ x, y, z $ the distances of the point $ P $ from the vertices $ B, C, A $. Prove that if $$ x^2 + xy + y^2 = a^2 $$ $$y^2 + yz + z^2 = b^2 $$ $$z^2 + zx + x^2 = c^2$$ this $$ a^2 + ab + b^2 > c^2.$$

2006 Federal Math Competition of S&M, Problem 2

Tags: inequalities
Let $x,y,z$ be positive numbers with $x+y+z=1$. Show that $$yz+zx+xy\ge4\left(y^2z^2+z^2x^2+x^2y^2\right)+5xyz.$$When does equality hold?

2011 Kosovo National Mathematical Olympiad, 3

Prove that the following inequality holds: \[ \left( \log_{24}48 \right)^2+ \left( \log_{12}54 \right)^2>4\]

1965 Swedish Mathematical Competition, 3

Show that for every real $x \ge \frac12$ there is an integer $n$ such that $|x - n^2| \le \sqrt{x-\frac{1}{4}}$.

2012 IMO, 2

Let $n\ge 3$ be an integer, and let $a_2,a_3,\ldots ,a_n$ be positive real numbers such that $a_{2}a_{3}\cdots a_{n}=1$. Prove that \[(1 + a_2)^2 (1 + a_3)^3 \dotsm (1 + a_n)^n > n^n.\] [i]Proposed by Angelo Di Pasquale, Australia[/i]

2011 Mathcenter Contest + Longlist, 1 sl1

Let $a,b,c \in \mathbb{R}$. Prove that $$\sum_{cyc} (a^3-b^3)^2+3\sum_{cyc}(a^2-b^2)^2+6(a-b)(b-c)(c-a)(ab+ bc+ca) \ge 0.$$ [i](LightLucifer)[/i]

2024 Bangladesh Mathematical Olympiad, P6

Let $a_1, a_2, \ldots, a_{2024}$ be a permutation of $1, 2, \ldots, 2024$. Find the minimum possible value of\[\sum_{i=1} ^{2023} \Big[(a_i+a_{i+1})\Big(\frac{1}{a_i}+\frac{1}{a_{i+1}}\Big)+\frac{1}{a_ia_{i+1}}\Big]\] [i]Proposed by Md. Ashraful Islam Fahim[/i]