This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2016 Hong Kong TST, 2

Tags: inequalities
Find the largest possible positive integer $n$ , so that there exist$n$ distinct positive real numbers $x_1,x_2,...,x_n$ satisfying the following inequality : for any $1\le i,j \le n,$ $(3x_i-x_j) (x_i-3x_j)\geq (1-x_ix_j)^2$

2019 Saudi Arabia JBMO TST, 2

Let $a, b, c$ be positive real numbers. Prove that $$\frac{a^3}{a^2 + bc}+\frac{b^3}{b^2 + ca}+\frac{c^3}{c^2 + ab} \ge \frac{(a^2 + b^2 + c^2)(ab + bc + ca)}{a^3 + b^3 + c^3 + 3abc}$$

2015 AIME Problems, 8

Tags: inequalities
Let $a$ and $b$ be positive integers satisfying $\frac{ab+1}{a+b}<\frac{3}{2}$. The maximum possible value of $\frac{a^3b^3+1}{a^3+b^3}$ is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

2015 Azerbaijan JBMO TST, 1

Tags: inequalities
Let $a,b,c$ be positive real numbers. Prove that \[\left((3a^2+1)^2+2\left(1+\frac{3}{b}\right)^2\right)\left((3b^2+1)^2+2\left(1+\frac{3}{c}\right)^2\right)\left((3c^2+1)^2+2\left(1+\frac{3}{a}\right)^2\right)\geq 48^3\]

2009 Iran MO (2nd Round), 2

Let $ a_1<a_2<\cdots<a_n $ be positive integers such that for every distinct $1\leq{i,j}\leq{n}$ we have $ a_j-a_i $ divides $ a_i $. Prove that \[ ia_j\leq{ja_i} \qquad \text{ for } 1\leq{i}<j\leq{n} \]

2011 ELMO Shortlist, 5

Given positive reals $x,y,z$ such that $xy+yz+zx=1$, show that \[\sum_{\text{cyc}}\sqrt{(xy+kx+ky)(xz+kx+kz)}\ge k^2,\]where $k=2+\sqrt{3}$. [i]Victor Wang.[/i]

2022 Israel TST, 2

Tags: inequalities
The numbers $a$, $b$, and $c$ are real. Prove that $$(a^5+b^5+c^5+a^3c^2+b^3a^2+c^3b^2)^2\geq 4(a^2+b^2+c^2)(a^5b^3+b^5c^3+c^5a^3)$$

1974 Putnam, B5

Show that $$1+\frac{n}{1!} + \frac{n^{2}}{2!} +\ldots+ \frac{n^{n}}{n!} > \frac{e^{n}}{2}$$ for every integer $n\geq 0.$

2009 Spain Mathematical Olympiad, 5

Tags: inequalities
Let, $ a,b,c$ real positive numbers with $ abc \equal{} 1$ Prove: $ (\frac {a}{1 \plus{} ab})^2 \plus{} (\frac {b}{1 \plus{} bc})^2 \plus{} (\frac {c}{1 \plus{} ca})^2\geq \frac {3}{4}$ Thanks!

2011 China National Olympiad, 1

Let $a_1,a_2,\ldots,a_n$ are real numbers, prove that; \[\sum_{i=1}^na_i^2-\sum_{i=1}^n a_i a_{i+1} \le \left\lfloor \frac{n}{2}\right\rfloor(M-m)^2.\] where $a_{n+1}=a_1,M=\max_{1\le i\le n} a_i,m=\min_{1\le i\le n} a_i$.

2013 Israel National Olympiad, 6

Let $x_1,...,x_n$ be positive real numbers, satisfying $x_1+\dots+x_n=n$. Prove that $\frac{x_1}{x_2}+\frac{x_2}{x_3}+\dots+\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}\leq\frac{4}{x_1\cdot x_2\cdot\dots\cdot x_n}+n-4$.

2016 Azerbaijan JBMO TST, 1

If $ a,b,c $ represent the lengths of the sides of a triangle, prove the inequality: $$ 3\le\sum_{\text{cyc}}\sqrt{\frac{a}{-a+b+c}} . $$

2018 Istmo Centroamericano MO, 3

Determine all sequences of integers $a_1, a_2,. . .,$ such that: (i) $1 \le a_i \le n$ for all $1 \le i \le n$. (ii) $| a_i - a_j| = | i - j |$ for any $1 \le i, j \le n$

1966 Bulgaria National Olympiad, Problem 2

Tags: inequalities
Prove that for every four positive numbers $a,b,c,d$ the following inequality is true: $$\sqrt{\frac{a^2+b^2+c^2+d^2}4}\ge\sqrt[3]{\frac{abc+abd+acd+bcd}4}.$$

1995 Nordic, 3

Let $n \ge 2$ and let $x_1, x_2, ..., x_n$ be real numbers satisfying $x_1 +x_2 +...+x_n \ge 0$ and $x_1^2+x_2^2+...+x_n^2=1$. Let $M = max \{x_1, x_2,... , x_n\}$. Show that $M \ge \frac{1}{\sqrt{n(n-1)}}$ (1) .When does equality hold in (1)?

2019 Jozsef Wildt International Math Competition, W. 36

Tags: inequalities
For any $a$, $b$, $c > 0$ and for any $n \in \mathbb{N}^*$, prove the inequality$$(a - b)\left(\frac{a}{b}\right)^n+(b - c)\left(\frac{b}{c}\right)^n+(c - a)\left(\frac{c}{a}\right)^n\geq (a - b)\frac{a}{b}+(b - c)\frac{b}{c}+(c - a)\frac{c}{a}$$

2006 Putnam, B6

Let $k$ be an integer greater than $1.$ Suppose $a_{0}>0$ and define \[a_{n+1}=a_{n}+\frac1{\sqrt[k]{a_{n}}}\] for $n\ge 0.$ Evaluate \[\lim_{n\to\infty}\frac{a_{n}^{k+1}}{n^{k}}.\]

2022 Kyiv City MO Round 1, Problem 2

For any reals $x, y$, show the following inequality: $$\sqrt{(x+4)^2 + (y+2)^2} + \sqrt{(x-5)^2 + (y+4)^2} \le \sqrt{(x-2)^2 + (y-6)^2} + \sqrt{(x-5)^2 + (y-6)^2} + 20$$ [i](Proposed by Bogdan Rublov)[/i]

1972 USAMO, 4

Let $ R$ denote a non-negative rational number. Determine a fixed set of integers $ a,b,c,d,e,f$, such that for [i]every[/i] choice of $ R$, \[ \left| \frac{aR^2\plus{}bR\plus{}c}{dR^2\plus{}eR\plus{}f}\minus{}\sqrt[3]{2}\right| < \left|R\minus{}\sqrt[3]{2}\right|.\]

2020 Dutch IMO TST, 1

Given are real numbers $a_1, a_2,..., a_{2020}$, not necessarily different. For every $n \ge 2020$, define $a_{n + 1}$ as the smallest real zero of the polynomial $$P_n (x) = x^{2n} + a_1x^{2n - 2} + a_2x^{2n - 4} +... + a_{n -1}x^2 + a_n$$, if it exists. Assume that $a_{n + 1}$ exists for all $n \ge 2020$. Prove that $a_{n + 1} \le a_n$ for all $n \ge 2021$.

2012 AMC 12/AHSME, 14

Bernado and Silvia play the following game. An integer between 0 and 999, inclusive, is selected and given to Bernado. Whenever Bernado receives a number, he doubles it and passes the result to Silvia. Whenever Silvia receives a number, she adds 50 to it and passes the result to Bernado. The winner is the last person who produces a number less than 1000. Let $N$ be the smallest initial number that results in a win for Bernado. What is the sum of the digits of $N$? $\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$

2005 France Team Selection Test, 4

Let $X$ be a non empty subset of $\mathbb{N} = \{1,2,\ldots \}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X=\mathbb{N}$.

2018 Romania National Olympiad, 3

Let $a, b, c \ge 0$ so that $ab + bc + ca = 3$. Prove that: $$\frac{a}{a^2+7}+\frac{b}{b^2+7}+\frac{c}{c^2+7}\le \frac38$$

2023 All-Russian Olympiad Regional Round, 10.10

Prove that for all positive reals $x, y, z$, the inequality $(x-y)\sqrt{3x^2+y^2}+(y-z)\sqrt{3y^2+z^2}+(z-x)\sqrt{3z^2+x^2} \geq 0$ is satisfied.

2015 Azerbaijan JBMO TST, 1

With the conditions $a,b,c\in\mathbb{R^+}$ and $a+b+c=1$, prove that \[\frac{7+2b}{1+a}+\frac{7+2c}{1+b}+\frac{7+2a}{1+c}\geq\frac{69}{4}\]