This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

Mid-Michigan MO, Grades 10-12, 2003

[b]p1.[/b] The length of the first side of a triangle is $1$, the length of the second side is $11$, and the length of the third side is an integer. Find that integer. [b]p2.[/b] Suppose $a, b$, and $c$ are positive numbers such that $a + b + c = 1$. Prove that $ab + ac + bc \le \frac13$. [b]p3.[/b] Prove that $1 +\frac12+\frac13+\frac14+ ... +\frac{1}{100}$ is not an integer. [b]p4.[/b] Find all of the four-digit numbers n such that the last four digits of $n^2$ coincide with the digits of $n$. [b]p5.[/b] (Bonus) Several ants are crawling along a circle with equal constant velocities (not necessarily in the same direction). If two ants collide, both immediately reverse direction and crawl with the same velocity. Prove that, no matter how many ants and what their initial positions are, they will, at some time, all simultaneously return to the initial positions. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1971 Polish MO Finals, 1

Show that if $(a_n)$ is an infinite sequence of distinct positive integers, neither of which contains digit $0$ in the decimal expansion, then $$\sum_{n=1}^{\infty} \frac{1}{a_n}< 29.$$

1981 Romania Team Selection Tests, 5.

Let $ABC$ be an equilateral triangle, $M$ be a point inside it, and $A',B',C'$ be the intersections of $AM,\; BM,\; CM$ with the sides of $ABC$. If $A'',\; B'',\; C''$ are the midpoints of $BC$, $CA$, $AB$, show that there is a triangle with sides $A'A''$, $B'B''$ and $C'C''$. [i]Laurențiu Panaitopol[/i]

2010 Iran MO (3rd Round), 5

Tags: inequalities
$x,y,z$ are positive real numbers such that $xy+yz+zx=1$. prove that: $3-\sqrt{3}+\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge(x+y+z)^2$ (20 points) the exam time was 6 hours.

2008 VJIMC, Problem 2

Find all continuously differentiable functions $f:[0,1]\to(0,\infty)$ such that $\frac{f(1)}{f(0)}=e$ and $$\int^1_0\frac{\text dx}{f(x)^2}+\int^1_0f'(x)^2\text dx\le2.$$