This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2008 JBMO Shortlist, 8

Show that $(x + y + z) \big(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\big) \ge 4 \big(\frac{x}{xy+1}+\frac{y}{yz+1}+\frac{z}{zx+1}\big)^2$ , for all real positive numbers $x, y $ and $z$.

2000 Mongolian Mathematical Olympiad, Problem 5

Let $m,n,k$ be positive integers with $m\ge2$ and $k\ge\log_2(m-1)$. Prove that $$\prod_{s=1}^n\frac{ms-1}{ms}<\sqrt[2^{k+1}]{\frac1{2n+1}}.$$

2011 Graduate School Of Mathematical Sciences, The Master Cource, The University Of Tokyo, 2

Let $f(x,\ y)=\frac{x+y}{(x^2+1)(y^2+1)}.$ (1) Find the maximum value of $f(x,\ y)$ for $0\leq x\leq 1,\ 0\leq y\leq 1.$ (2) Find the maximum value of $f(x,\ y),\ \forall{x,\ y}\in{\mathbb{R}}.$

2016 JBMO TST - Turkey, 6

Prove that \[ (x^4+y)(y^4+z)(z^4+x) \geq (x+y^2)(y+z^2)(z+x^2) \] for all positive real numbers $x, y, z$ satisfying $xyz \geq 1$.

2007 France Team Selection Test, 2

Let $a,b,c,d$ be positive reals such taht $a+b+c+d=1$. Prove that: \[6(a^{3}+b^{3}+c^{3}+d^{3})\geq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{8}.\]

2000 Tournament Of Towns, 3

Prove the inequality $$ 1^k+2^k+...+n^k \le \frac{n^{2k}-(n-1)^k}{n^k-(n-1)^k}$$ (L Emelianov)

2008 China Team Selection Test, 5

For two given positive integers $ m,n > 1$, let $ a_{ij} (i = 1,2,\cdots,n, \; j = 1,2,\cdots,m)$ be nonnegative real numbers, not all zero, find the maximum and the minimum values of $ f$, where \[ f = \frac {n\sum_{i = 1}^{n}(\sum_{j = 1}^{m}a_{ij})^2 + m\sum_{j = 1}^{m}(\sum_{i= 1}^{n}a_{ij})^2}{(\sum_{i = 1}^{n}\sum_{j = 1}^{m}a_{ij})^2 + mn\sum_{i = 1}^{n}\sum_{j=1}^{m}a_{ij}^2}. \]

2014 Contests, 2

Tags: inequalities
Let $a,b$ be positive real numbers.Prove that $(1+a)^{8}+(1+b)^{8}\geq 128ab(a+b)^{2}$.

2010 All-Russian Olympiad, 2

There are $100$ random, distinct real numbers corresponding to $100$ points on a circle. Prove that you can always choose $4$ consecutive points in such a way that the sum of the two numbers corresponding to the points on the outside is always greater than the sum of the two numbers corresponding to the two points on the inside.

MathLinks Contest 5th, 6.3

Let $x, y, z$ be three positive numbers such that $(x + y-z) \left( \frac{1}{x}+ \frac{1}{y}- \frac{1}{z} \right)=4$. Find the minimal value of the expression $$E(x, y, z) = (x^4 + y^4 + z^4) \left( \frac{1}{x^4}+ \frac{1}{y^4}+ \frac{1}{z^4} \right) .$$

the 9th XMO, 1

For any $n$ consecutive integers $a_1, \cdots, a_n$, prove that $$(a_1+\cdots+a_n)\cdot\left(\frac{1}{a_1}+\cdots+\frac{1}{a_n}\right)\leqslant \frac{n(n+1)\ln(\text{e}n)}{2}.$$

2015 Postal Coaching, Problem 1

Let $n \in \mathbb{N}$ be such that $gcd(n, 6) = 1$. Let $a_1 < a_2 < \cdots < a_n$ and $b_1 < b_2 < \cdots < b_n$ be two collection of positive integers such that $a_j + a_k + a_l = b_j + b_k + b_l$ for all integers $1 \le j < k < l \le n$. Prove that $a_j = b_j$ for all $1 \le j \le n$.

1989 IberoAmerican, 3

Tags: inequalities
Let $a,b$ and $c$ be the side lengths of a triangle. Prove that: \[\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}<\frac{1}{16}\]

2020 Tuymaada Olympiad, 2

Given positive real numbers $a_1, a_2, \dots, a_n$. Let \[ m = \min \left( a_1 + \frac{1}{a_2}, a_2 + \frac{1}{a_3}, \dots, a_{n - 1} + \frac{1}{a_n} , a_n + \frac{1}{a_1} \right). \] Prove the inequality \[ \sqrt[n]{a_1 a_2 \dots a_n} + \frac{1}{\sqrt[n]{a_1 a_2 \dots a_n}} \ge m. \]

2023 Thailand October Camp, 3

Tags: inequalities
Let $n>3$ be an integer. If $x_1<x_2<\ldots<x_{n+2}$ are reals with $x_1=0$, $x_2=1$ and $x_3>2$, what is the maximal value of $$(\frac{x_{n+1}+x_{n+2}-1}{x_{n+1}(x_{n+2}-1)})\cdot (\sum_{i=1}^{n}\frac{(x_{i+2}-x_{i+1})(x_{i+1}-x_i)}{x_{i+2}-x_i})?$$

2022 Puerto Rico Team Selection Test, 6

Let $f$ be a function defined on $[0, 2022]$, such that $f(0) = f(2022) = 2022$, and $$|f(x) - f(y)| \le 2|x -y|,$$ for all $x, y$ in $[0, 2022]$. Prove that for each $x, y$ in $[0, 2022]$, the distance between $f(x)$ and $f(y)$ does not exceed $2022$.

2017 IFYM, Sozopol, 1

Let $x,y,z\in \mathbb{R}^+$ be such that $xy+yz+zx=x+y+z$. Prove the following inequality: $\frac{1}{x^2+y+1}+\frac{1}{y^2+z+1}+\frac{1}{z^2+x+1}\leq 1$.

2012 HMNT, 10

Let $\alpha$ and $\beta$ be reals. Find the least possible value of $$(2 \cos \alpha + 5 \sin \beta - 8)^2 + (2 \sin \alpha + 5 \cos \beta - 15)^2.$$

2020 Jozsef Wildt International Math Competition, W52

If $f\in C^{(3)}([0,1])$ such that $f(0)=f(1)=f'(0)=0$ and $|f'''(x)|\le1,(\forall)x\in[0,1]$, show that: a) $$|f(x)|\le\frac{x(1-x)}{\sqrt3}\cdot\left(\int^x_0\frac{f(t)}{t(1-t)}dt\right)^{1/2},(\forall)x\in[0,1]$$ b) $$|f'(x)|\le\frac{1-2x}{\sqrt3}\cdot\left(\int^x_0\frac{|f(t)|}{t(1-t)}dt\right)^{1/2},(\forall)x\in\left[0,\frac12\right]$$ c) $$\int^1_0(1-x)^2\cdot\frac{|f(x)|}xdx\ge9\int^1_0\left(\frac{f(x)}x\right)^2dx$$ [i]Proposed by Florin Stănescu and Şerban Cioculescu[/i]

2023 District Olympiad, P3

Let $x,y{}$ and $z{}$ be positive real numbers satisfying $x+y+z=1$. Prove that [list=a] [*]\[1-\frac{x^2-yz}{x^2+x}=\frac{(1-y)(1-z)}{x^2+x};\] [*]\[\frac{x^2-yz}{x^2+x}+\frac{y^2-zx}{y^2+y}+\frac{z^2-xy}{z^2+z}\leqslant 0.\] [/list]

2013 Turkey Junior National Olympiad, 1

Let $x, y, z$ be real numbers satisfying $x+y+z=0$ and $x^2+y^2+z^2=6$. Find the maximum value of \[ |(x-y)(y-z)(z-x) | \]

2012 Abels Math Contest (Norwegian MO) Final, 4b

Positive numbers $b_1, b_2,..., b_n$ are given so that $b_1 + b_2 + ...+ b_n \le 10$. Further, $a_1 = b_1$ and $a_m = sa_{m-1} + b_m$ for $m > 1$, where $0 \le s < 1$. Show that $a^2_1 + a^2_2 + ... + a^2_n \le \frac{100}{1 - s^2} $

2012 Junior Balkan Team Selection Tests - Moldova, 1

Tags: inequalities
Let $ 1\leq a,b,c,d,e,f,g,h,k \leq 9 $ and $ a,b,c,d,e,f,g,h,k $ are different integers, find the minimum value of the expression $ E = a*b*c+d*e*f+g*h*k $ and prove that it is minimum.

2015 Indonesia MO Shortlist, A3

Let $a,b,c$ positive reals such that $a^2+b^2+c^2=1$. Prove that $$\frac{a+b}{\sqrt{ab+1}}+\frac{b+c}{\sqrt{bc+1}}+\frac{c+a}{\sqrt{ac+1}}\le 3$$

2016 Bulgaria National Olympiad, Problem 3

For $a,b,c,d>0$ prove that $$\frac {a+\sqrt{ab}+\sqrt[3]{abc}+\sqrt[4]{abcd}}{4} \leq \sqrt[4]{a.\frac{a+b}{2}.\frac{a+b+c}{3}.\frac{a+b+c+d}{4}}$$