This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2018 Korea National Olympiad, 4

Find all real values of $K$ which satisfies the following. Let there be a sequence of real numbers $\{a_n\}$ which satisfies the following for all positive integers $n$. (i). $0 < a_n < n^K$. (ii). $a_1 + a_2 + \cdots + a_n < \sqrt{n}$. Then, there exists a positive integer $N$ such that for all integers $n>N$, $$a^{2018}_1 + a^{2018}_2 + \cdots +a^{2018}_n < \frac{n}{2018}$$

2013 Junior Balkan MO, 3

Show that \[\left(a+2b+\dfrac{2}{a+1}\right)\left(b+2a+\dfrac{2}{b+1}\right)\geq 16\] for all positive real numbers $a$ and $b$ such that $ab\geq 1$.

2020 Macedonia Additional BMO TST, 1

Let $a_1,a_2,...,a_{2020}$ be positive real numbers. Prove that: $$\max{(a^2_1-a_2,a^2_2-a_3,...,a^2_{2020}-a_1)}\ge\max{(a^2_1-a_1,a^2_2-a_2,...,a^2_{2020}-a_{2020})}$$

2021 Taiwan TST Round 1, A

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

2024 Indonesia Regional, 1

Given a real number $C\leqslant 2$. Prove that for every positive real number $x,y$ with $xy=1$, the following inequality holds: \[ \sqrt{\frac{x^2+y^2}{2}} + \frac{C}{x+y} \geqslant 1 + \frac{C}{2}.\] [i]Proposed by Fajar Yuliawan, Indonesia[/i]

1996 IMO Shortlist, 2

Let $ a_1 \geq a_2 \geq \ldots \geq a_n$ be real numbers such that for all integers $ k > 0,$ \[ a^k_1 \plus{} a^k_2 \plus{} \ldots \plus{} a^k_n \geq 0.\] Let $ p \equal{}\max\{|a_1|, \ldots, |a_n|\}.$ Prove that $ p \equal{} a_1$ and that \[ (x \minus{} a_1) \cdot (x \minus{} a_2) \cdots (x \minus{} a_n) \leq x^n \minus{} a^n_1\] for all $ x > a_1.$

2020 Turkey Team Selection Test, 4

Let $Z^+$ be positive integers set. $f:\mathbb{Z^+}\to\mathbb{Z^+}$ is a function and we show $ f \circ f \circ ...\circ f $ with $f_l$ for all $l\in \mathbb{Z^+}$ where $f$ is repeated $l$ times. Find all $f:\mathbb{Z^+}\to\mathbb{Z^+}$ functions such that $$ (n-1)^{2020}< \prod _{l=1}^{2020} {f_l}(n)< n^{2020}+n^{2019} $$ for all $n\in \mathbb{Z^+}$

1999 Mongolian Mathematical Olympiad, Problem 2

Let $a,b,c$ be the real numbers with $a\ge\frac85b>0$ and $a\ge c>0$. Prove the inequality $$\frac45\left(\frac1a+\frac1b\right)+\frac2c\ge\frac{27}2\cdot\frac1{a+b+c}.$$

2001 Slovenia National Olympiad, Problem 2

Tina wrote a positive number on each of five pieces of paper. She did not say which numbers she wrote, but revealed their pairwise sums instead: $17,20,28,14,42,36,28,39,25,31$. Which numbers did she write?

2000 Moldova National Olympiad, Problem 6

Assuming that real numbers $x$ and $y$ satisfy $y\left(1+x^2\right)=x\left(\sqrt{1-4y^2}-1\right)$, find the maximum value of $xy$.

2022 Bulgarian Spring Math Competition, Problem 10.1

If $x, y, z \in \mathbb{R}$ are solutions to the system of equations $$\begin{cases} x - y + z - 1 = 0\\ xy + 2z^2 - 6z + 1 = 0\\ \end{cases}$$ what is the greatest value of $(x - 1)^2 + (y + 1)^2$?

2024 Greece Junior Math Olympiad, 1

a) Prove that for all real numbers $k,l,m$ holds : $$(k+l+m)^2 \ge 3 (kl+lm+mk)$$ When does equality holds? b) If $x,y,z$ are positive real numbers and $a,b$ real numbers such that $$a(x+y+z)=b(xy+yz+zx)=xyz,$$ prove that $a \ge 3b^2$. When does equality holds?

2000 District Olympiad (Hunedoara), 1

[b]a)[/b] Show that $ \frac{n}{2}\ge \frac{2\sqrt{x} +3\sqrt[3]{x}+\cdots +n\sqrt[n]{x}}{n-1} -x, $ for all non-negative reals $ x $ and integers $ n\ge 2. $ [b]b)[/b] If $ x,y,z\in (0,\infty ) , $ then prove the inequality $$ \sum_{\text{cyc}} \frac{x}{(2x+y+z)^2+4} \le 3/16 $$

1994 Baltic Way, 14

Let $\alpha,\beta,\gamma$ be the angles of a triangle opposite to its sides with lengths $a,b,c$ respectively. Prove the inequality \[a\left(\frac{1}{\beta}+\frac{1}{\gamma}\right)+b\left(\frac{1}{\gamma}+\frac{1}{\alpha}\right)+c\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)\ge2\left(\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}\right)\]

2020 DMO Stage 1, 1.

[b]Q.[/b] Find the minimum value of the expression for $x,y,z\in \mathbb{R}^{+}$ $$\sum_{\text{cyc}}\frac{(x+1)^{4}+2(y+1)^{6}-(y+1)^{4}}{(y+1)^{6}}$$ [i]Proposed by Aritra12[/i]

2014 Junior Balkan MO, 3

For positive real numbers $a,b,c$ with $abc=1$ prove that $\left(a+\frac{1}{b}\right)^{2}+\left(b+\frac{1}{c}\right)^{2}+\left(c+\frac{1}{a}\right)^{2}\geq 3(a+b+c+1)$

2016 JBMO Shortlist, 4

Tags: inequality
If the non-negative reals $x,y,z$ satisfy $x^2+y^2+z^2=x+y+z$. Prove that $$\displaystyle\frac{x+1}{\sqrt{x^5+x+1}}+\frac{y+1}{\sqrt{y^5+y+1}}+\frac{z+1}{\sqrt{z^5+z+1}}\geq 3.$$ When does the equality occur? [i]Proposed by Dorlir Ahmeti, Albania[/i]

2025 Belarusian National Olympiad, 9.6

Numbers $a,b,c$ are lengths of sides of some triangle. Prove the inequality$$\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c} \geq \frac{a+b}{2c}+\frac{b+c}{2a}+\frac{c+a}{2b}$$ [i]M. Karpuk[/i]

2014 Contests, 1

Let $x,y$ be positive real numbers .Find the minimum of $x+y+\frac{|x-1|}{y}+\frac{|y-1|}{x}$.

2014 JBMO TST - Macedonia, 1

Prove that $\frac{1}{1\times2013}+\frac{1}{2\times2012}+\frac{1}{3\times2011}+...+\frac{1}{2012\times2}+\frac{1}{2013\times1}<1$

2007 IMO Shortlist, 4

Let $ A_0 \equal{} (a_1,\dots,a_n)$ be a finite sequence of real numbers. For each $ k\geq 0$, from the sequence $ A_k \equal{} (x_1,\dots,x_k)$ we construct a new sequence $ A_{k \plus{} 1}$ in the following way. 1. We choose a partition $ \{1,\dots,n\} \equal{} I\cup J$, where $ I$ and $ J$ are two disjoint sets, such that the expression \[ \left|\sum_{i\in I}x_i \minus{} \sum_{j\in J}x_j\right| \] attains the smallest value. (We allow $ I$ or $ J$ to be empty; in this case the corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily. 2. We set $ A_{k \plus{} 1} \equal{} (y_1,\dots,y_n)$ where $ y_i \equal{} x_i \plus{} 1$ if $ i\in I$, and $ y_i \equal{} x_i \minus{} 1$ if $ i\in J$. Prove that for some $ k$, the sequence $ A_k$ contains an element $ x$ such that $ |x|\geq\frac n2$. [i]Author: Omid Hatami, Iran[/i]

Russian TST 2022, P3

Let $n\geqslant 1$ be an integer, and let $x_0,x_1,\ldots,x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_ix_{i+1}-x_{i-1}^2\geqslant 1$ for all $i=1,2,\ldots,n.$ Show that \[x_0+x_1+\cdots+x_n+x_{n+1}>\bigg(\frac{2n}{3}\bigg)^{3/2}.\][i]Pakawut Jiradilok and Wijit Yangjit, Thailand[/i]

2024 Sharygin Geometry Olympiad, 10.3

Tags: geometry , geo , inequality
Let $BE$ and $CF$ be the bisectors of a triangle $ABC$. Prove that $2EF \leq BF + CE$.

2024 Taiwan TST Round 2, 2

Let $n$ be a positive integer. Prove that the inequality \[n \sum_{i=1}^n \sum_{j = 1}^n \sum_{k=1}^n \frac{3}{a_ja_k + a_ka_i + a_i a_j} \ge \left(\sum_{j=1}^n \sum_{k=1}^n \frac{2}{a_j + a_k}\right)^2 \] holds for any positive real numbers $a_1$, $a_2$, $\dots$, $a_n$. [i]Proposed by Li4 and Ming Hsiao.[/i]

1992 IMO Longlists, 49

Given real numbers $x_i \ (i = 1, 2, \cdots, 4k + 2)$ such that \[\sum_{i=1}^{4k +2} (-1)^{i+1} x_ix_{i+1} = 4m \qquad ( \ x_1=x_{4k+3} \ )\] prove that it is possible to choose numbers $x_{k_{1}}, \cdots, x_{k_{6}}$ such that \[\sum_{i=1}^{6} (-1)^{i} k_i k_{i+1} > m \qquad ( \ x_{k_{1}} = x_{k_{7}} \ )\]