This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2020 Thailand Mathematical Olympiad, 8

For all positive real numbers $a,b,c$ with $a+b+c=3$, prove the inequality $$\frac{a^6}{c^2+2b^3} + \frac{b^6}{a^2+2c^3} + \frac{c^6}{b^2+2a^3} \geq 1.$$

1980 IMO Longlists, 2

Define the numbers $a_0, a_1, \ldots, a_n$ in the following way: \[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \] Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]

1999 Mongolian Mathematical Olympiad, Problem 5

Given $a;b;c$ satisfying $a^{2}+b^{2}+c^{2}=2$ . Prove that: a) $\left | a+b+c-abc \right |\leqslant 2$ . b) $\left | a^{3}+b^{3}+c^{3}-3abc \right |\leqslant 2\sqrt{2}$

2024 APMO, 3

Let $n$ be a positive integer and let $a_1, a_2, \ldots, a_n$ be positive reals. Show that $$\sum_{i=1}^{n} \frac{1}{2^i}(\frac{2}{1+a_i})^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.$$

2023 Junior Balkan Team Selection Tests - Moldova, 12

Let $a,b,c$ be positive real numbers such that $a^2+b^2+c^2=3. $ Prove that $$\frac{a^4+3ab^3}{a^3+2b^3}+\frac{b^4+3bc^3}{b^3+2c^3}+\frac{c^4+3ca^3}{c^3+2a^3}\leq4.$$

2010 BAMO, 5

Let $a$, $b$, $c$, $d$ be positive real numbers such that $abcd=1$. Prove that $1/[(1/2 +a+ab+abc)^{1/2}]+ 1/[(1/2+b+bc+bcd)^{1/2}] + 1/[(1/2+c+cd+cda)^{1/2}] + 1/[1(1/2+d+da+dab)^{1/2}]$ is greater than or equal to $2^{1/2}$.

2024 Indonesia MO, 6

Suppose $A_1 A_2 \ldots A_n$ is an $n$-sided polygon with $n \geq 3$ and $\angle A_j \leq 180^{\circ}$ for each $j$ (in other words, the polygon is convex or has fewer than $n$ distinct sides). For each $i \leq n$, suppose $\alpha_i$ is the smallest possible value of $\angle{A_i A_j A_{i+1}}$ where $j$ is neither $i$ nor $i+1$. (Here, we define $A_{n+1} = A_1$.) Prove that \[ \alpha_1 + \alpha_2 + \cdots + \alpha_n \leq 180^{\circ} \] and determine all equality cases.

2021 Junior Macedonian Mathematical Olympiad, Problem 4

Let $a$, $b$, $c$ be positive real numbers such that $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} = \frac{27}{4}.$ Show that: $$\frac{a^3+b^2}{a^2+b^2} + \frac{b^3+c^2}{b^2+c^2} + \frac{c^3+a^2}{c^2+a^2} \geq \frac{5}{2}.$$ [i]Authored by Nikola Velov[/i]

2021 Germany Team Selection Test, 3

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

1981 IMO Shortlist, 3

Find the minimum value of \[\max(a + b + c, b + c + d, c + d + e, d + e + f, e + f + g)\] subject to the constraints (i) $a, b, c, d, e, f, g \geq 0,$ (ii)$ a + b + c + d + e + f + g = 1.$

2013 JBMO Shortlist, 3

Show that \[\left(a+2b+\dfrac{2}{a+1}\right)\left(b+2a+\dfrac{2}{b+1}\right)\geq 16\] for all positive real numbers $a$ and $b$ such that $ab\geq 1$.

1998 IMO Shortlist, 5

In a contest, there are $m$ candidates and $n$ judges, where $n\geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most $k$ candidates. Prove that \[{\frac{k}{m}} \geq {\frac{n-1}{2n}}. \]

1985 Yugoslav Team Selection Test, Problem 3

1) proove for positive $a, b, c, d$ $ \frac{a}{b+c} + \frac{b}{c+d} + \frac{c}{d+a} + \frac{d}{a+b} \ge 2$

2017 Bosnia and Herzegovina EGMO TST, 4

Let $a$, $b$, $c$, $d$ and $e$ be distinct positive real numbers such that $a^2+b^2+c^2+d^2+e^2=ab+ac+ad+ae+bc+bd+be+cd+ce+de$ $a)$ Prove that among these $5$ numbers there exists triplet such that they cannot be sides of a triangle $b)$ Prove that, for $a)$, there exists at least $6$ different triplets

1971 IMO Longlists, 36

The matrix \[A=\begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ldots & \vdots \\ a_{n1} & \ldots & a_{nn} \end{pmatrix}\] satisfies the inequality $\sum_{j=1}^n |a_{j1}x_1 + \cdots+ a_{jn}x_n| \leq M$ for each choice of numbers $x_i$ equal to $\pm 1$. Show that \[|a_{11} + a_{22} + \cdots+ a_{nn}| \leq M.\]

2004 Bosnia and Herzegovina Team Selection Test, 5

For $0 \leq x < \frac{\pi}{2} $ prove the inequality: $a^2\tan(x)\cdot(\cos(x))^{\frac{1}{3}}+b^2\sin{x}\geq 2xab$ where $a$ and $b$ are real numbers.

2021 Winter Stars of Mathematics, 1

Let $a_1,a_2,a_3,a_4$ be positive real numbers satisfying \[\sum_{i<j}a_ia_j=1.\]Prove that \[\sum_{\text{sym}}\frac{a_1a_2}{1+a_3a_4}\geq\frac{6}{7}.\][i]* * *[/i]

2020 OMMock - Mexico National Olympiad Mock Exam, 1

Let $a$, $b$, $c$ and $d$ positive real numbers with $a > c$ and $b < d$. Assume that \[a + \sqrt{b} \ge c + \sqrt{d} \qquad \text{and} \qquad \sqrt{a} + b \le \sqrt{c} + d\] Prove that $a + b + c + d > 1$. [i]Proposed by Victor Domínguez[/i]

1979 IMO Longlists, 33

Show that $\frac{20}{60} <\sin 20^{\circ} < \frac{21}{60}.$

1983 Brazil National Olympiad, 5

Show that $1 \le n^{1/n} \le 2$ for all positive integers $n$. Find the smallest $k$ such that $1 \le n ^{1/n} \le k$ for all positive integers $n$.

2021 Science ON all problems, 3

Are there any real numbers $a,b,c$ such that $a+b+c=6$, $ab+bc+ca=9$ and $a^4+b^4+c^4=260$? What about if we let $a^4+b^4+c^4=210$? [i] (Andrei Bâra)[/i]

1994 IMO Shortlist, 2

Let $ m$ and $ n$ be two positive integers. Let $ a_1$, $ a_2$, $ \ldots$, $ a_m$ be $ m$ different numbers from the set $ \{1, 2,\ldots, n\}$ such that for any two indices $ i$ and $ j$ with $ 1\leq i \leq j \leq m$ and $ a_i \plus{} a_j \leq n$, there exists an index $ k$ such that $ a_i \plus{} a_j \equal{} a_k$. Show that \[ \frac {a_1 \plus{} a_2 \plus{} ... \plus{} a_m}{m} \geq \frac {n \plus{} 1}{2}. \]

2025 Kyiv City MO Round 1, Problem 5

Determine the largest possible constant \( C \) such that for any positive real numbers \( x, y, z \), which are the sides of a triangle, the following inequality holds: \[ \frac{xy}{x^2 + y^2 + xz} + \frac{yz}{y^2 + z^2 + yx} + \frac{zx}{z^2 + x^2 + zy} \geq C. \] [i]Proposed by Vadym Solomka[/i]

2019 JBMO Shortlist, A1

Real numbers $a$ and $b$ satisfy $a^3+b^3-6ab=-11$. Prove that $-\frac{7}{3}<a+b<-2$. [i]Proposed by Serbia[/i]

JOM 2015 Shortlist, A5

Let $ a, b, c $ be the side length of a triangle, with $ ab + bc + ca = 18 $ and $ a, b, c > 1 $. Prove that $$ \sum_{cyc}\frac{1}{(a - 1)^3} > \frac{1}{a + b + c - 3} $$