This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2011 Germany Team Selection Test, 1

A sequence $x_1, x_2, \ldots$ is defined by $x_1 = 1$ and $x_{2k}=-x_k, x_{2k-1} = (-1)^{k+1}x_k$ for all $k \geq 1.$ Prove that $\forall n \geq 1$ $x_1 + x_2 + \ldots + x_n \geq 0.$ [i]Proposed by Gerhard Wöginger, Austria[/i]

2020 Moldova Team Selection Test, 2

Show that for any positive real numbers $a$, $b$, $c$ the following inequality takes place $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a+b+c}{\sqrt{a^2+b^2+c^2}} \geq 3+\sqrt{3}$

2020 Junior Balkan Team Selection Tests-Serbia, 3#

Tags: inequality
Given are real numbers $a_1, a_2,...,a_{101}$ from the interval $[-2,10]$ such that their sum is $0$. Prove that the sum of their squares is smaller than $2020$.

2025 Kosovo National Mathematical Olympiad`, P2

Let $x$ and $y$ be real numbers where at least one of them is bigger than $2$ and $xy+4 > 2(x+y)$ holds. Show that $xy>x+y$.

1982 IMO Shortlist, 15

Show that \[ \frac{1 - s^a}{1 - s} \leq (1 + s)^{a-1}\] holds for every $1 \neq s > 0$ real and $0 < a \leq 1$ rational.

2005 Federal Math Competition of S&M, Problem 1

If $x,y,z$ are positive numbers, prove that $$\frac x{\sqrt{y+z}}+\frac y{\sqrt{z+x}}+\frac z{\sqrt{x+y}}\ge\sqrt{\frac32(x+y+z)}.$$

2017 Azerbaijan Senior National Olympiad, A5

$a,b,c \in (0,1)$ and $x,y,z \in ( 0, \infty)$ reals satisfies the condition $a^x=bc,b^y=ca,c^z=ab$. Prove that \[ \dfrac{1}{2+x}+\dfrac{1}{2+y}+\dfrac{1}{2+z} \leq \dfrac{3}{4} \] \\

2020 Moldova Team Selection Test, 7

Show that for any positive real numbers $a$, $b$, $c$ the following inequality takes place $$\frac{a}{\sqrt{7a^2+b^2+c^2}}+\frac{b}{\sqrt{a^2+7b^2+c^2}}+\frac{c}{\sqrt{a^2+b^2+7c^2}} \leq 1.$$

2019 ELMO Shortlist, A1

Let $a$, $b$, $c$ be positive reals such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Show that $$a^abc+b^bca+c^cab\ge 27bc+27ca+27ab.$$ [i]Proposed by Milan Haiman[/i]

2018 Azerbaijan JBMO TST, 2

a) Find : $A=\{(a,b,c) \in \mathbb{R}^{3} | a+b+c=3 , (6a+b^2+c^2)(6b+c^2+a^2)(6c+a^2+b^2) \neq 0\}$ b) Prove that for any $(a,b,c) \in A$ next inequality hold : \begin{align*} \frac{a}{6a+b^2+c^2}+\frac{b}{6b+c^2+a^2}+\frac{c}{6c+a^2+b^2} \le \frac{3}{8} \end{align*}

2013 Balkan MO Shortlist, A1

Positive real numbers $a, b,c$ satisfy $ab + bc+ ca = 3$. Prove the inequality $$\frac{1}{4+(a+b)^2}+\frac{1}{4+(b+c)^2}+\frac{1}{4+(c+a)^2}\le \frac{3}{8}$$

2013 Israel National Olympiad, 6

Let $x_1,...,x_n$ be positive real numbers, satisfying $x_1+\dots+x_n=n$. Prove that $\frac{x_1}{x_2}+\frac{x_2}{x_3}+\dots+\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}\leq\frac{4}{x_1\cdot x_2\cdot\dots\cdot x_n}+n-4$.

2015 Azerbaijan JBMO TST, 1

$a,b,c\in\mathbb{R^+}$ and $a^2+b^2+c^2=48$. Prove that \[a^2\sqrt{2b^3+16}+b^2\sqrt{2c^3+16}+c^2\sqrt{2a^3+16}\le24^2\]

2021 Austrian MO National Competition, 1

Let $a, b$ and $c$ be pairwise different natural numbers. Prove $\frac{a^3 + b^3 + c^3}{3} \ge abc + a + b + c$. When does equality holds? (Karl Czakler)

2021 Science ON all problems, 1

Consider the complex numbers $x,y,z$ such that $|x|=|y|=|z|=1$. Define the number $$a=\left (1+\frac xy\right )\left (1+\frac yz\right )\left (1+\frac zx\right ).$$ $\textbf{(a)}$ Prove that $a$ is a real number. $\textbf{(b)}$ Find the minimal and maximal value $a$ can achieve, when $x,y,z$ vary subject to $|x|=|y|=|z|=1$. [i] (Stefan Bălăucă & Vlad Robu)[/i]

2017 Saudi Arabia JBMO TST, 5

Let $a,b,c>0$ and $a+b+c=6$ . Prove that $$ \frac{1}{a^2b+16}+\frac{1}{b^2c+16}+\frac{1}{c^2a+16} \ge \frac{1}{8}.$$

2009 Bosnia and Herzegovina Junior BMO TST, 2

Let $a$ , $b$, $c$ and $d$ be positive real numbers such that $a+b+c+d=8$. Prove that $\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\geq8$

2022 Azerbaijan Junior National Olympiad, A3

Let $x,y,z \in \mathbb{R}^{+}$ and $x^2+y^2+z^2=x+y+z$. Prove that $$x+y+z+3 \ge 6 \sqrt[3]{\frac{xy+yz+zx}{3}}$$

2022 Tuymaada Olympiad, 4

For every positive $a_1, a_2, \dots, a_6$, prove the inequality \[ \sqrt[4]{\frac{a_1}{a_2 + a_3 + a_4}} + \sqrt[4]{\frac{a_2}{a_3 + a_4 + a_5}} + \dots + \sqrt[4]{\frac{a_6}{a_1 + a_2 + a_3}} \ge 2 \]

1967 IMO Longlists, 47

Prove the following inequality: \[\prod^k_{i=1} x_i \cdot \sum^k_{i=1} x^{n-1}_i \leq \sum^k_{i=1} x^{n+k-1}_i,\] where $x_i > 0,$ $k \in \mathbb{N}, n \in \mathbb{N}.$

Russian TST 2016, P3

Prove that for any points $A,B,C,D$ in the plane, the following inequality holds \[\frac{AB}{DA+DB}+\frac{BC}{DB+DC}\geqslant\frac{AC}{DA+DC}.\]

JOM 2013, 1.

Determine the minimum value of $\dfrac{m^m}{1\cdot 3\cdot 5\cdot \ldots \cdot(2m-1)}$ for positive integers $m$.

2014 Bosnia And Herzegovina - Regional Olympiad, 2

Let $a$, $b$ and $c$ be positive real numbers such that $ab+bc+ca=1$. Prove the inequality: $$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 3(a+b+c)$$

2022 Greece National Olympiad, 3

The positive real numbers $a,b,c,d$ satisfy the equality $$a+bc+cd+db+\frac{1}{ab^2c^2d^2}=18.$$ Find the maximum possible value of $a$.

2024 Turkey EGMO TST, 4

Let $(a_n)_{n=1}^{\infty}$ be a strictly increasing sequence such that inequality $$a_n(a_n-2a_{n-1})+a_{n-1}(a_{n-1}-2a_{n-2})\geq 0$$ holds for all $n \geq 3$. Prove that for all $n\geq2$ the inequality $$a_n \geq a_{n-1}+a_{n-2}+\dots+a_1$$ holds as well.