This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2022 Indonesia TST, A

Let $a, b, c$ be positive real numbers such that $abc = 1$. Prove that $$(a + b + c)(ab + bc + ca) + 3\ge 4(a + b + c).$$

2023 Azerbaijan JBMO TST, 1

Let $a < b < c < d < e$ be positive integers. Prove that $$\frac{1}{[a, b]} + \frac{1}{[b, c]} + \frac{1}{[c, d]} + \frac{2}{[d, e]} \le 1$$ where $[x, y]$ is the least common multiple of $x$ and $y$ (e.g., $[6, 10] = 30$). When does equality hold?

2016 Korea - Final Round, 4

If $x,y,z$ satisfies $x^2+y^2+z^2=1$, find the maximum possible value of $$(x^2-yz)(y^2-zx)(z^2-xy)$$

2022 Azerbaijan EGMO/CMO TST, A2

Let $a, b$ and $c$ be pairwise different natural numbers. Prove $\frac{a^3 + b^3 + c^3}{3} \ge abc + a + b + c$. When does equality holds? (Karl Czakler)

2019 District Olympiad, 2

Let $n \in \mathbb{N},n \ge 2,$ and $A,B \in \mathcal{M}_n(\mathbb{R}).$ Prove that there exists a complex number $z,$ such that $|z|=1$ and $$\Re \left( {\det(A+zB)} \right) \ge \det(A)+\det(B),$$ where $\Re(w)$ is the real part of the complex number $w.$

JOM 2015 Shortlist, A2

Let $ a, b, c $ be positive real numbers greater or equal to $ 3 $. Prove that $$ 3(abc+b+2c)\ge 2(ab+2ac+3bc) $$ and determine all equality cases.

2012 Kyiv Mathematical Festival, 2

Positive numbers $x, y, z$ satisfy $x^2+y^2+z^2+xy+yz+zy \le 1$. Prove that $\big( \frac{1}{x}-1\big) \big( \frac{1}{y}-1\big)\big( \frac{1}{z}-1\big) \ge 9 \sqrt6 -19$.

2008 IMO Shortlist, 4

For an integer $ m$, denote by $ t(m)$ the unique number in $ \{1, 2, 3\}$ such that $ m \plus{} t(m)$ is a multiple of $ 3$. A function $ f: \mathbb{Z}\to\mathbb{Z}$ satisfies $ f( \minus{} 1) \equal{} 0$, $ f(0) \equal{} 1$, $ f(1) \equal{} \minus{} 1$ and $ f\left(2^{n} \plus{} m\right) \equal{} f\left(2^n \minus{} t(m)\right) \minus{} f(m)$ for all integers $ m$, $ n\ge 0$ with $ 2^n > m$. Prove that $ f(3p)\ge 0$ holds for all integers $ p\ge 0$. [i]Proposed by Gerhard Woeginger, Austria[/i]

2021 European Mathematical Cup, 1

We say that a quadruple of nonnegative real numbers $(a,b,c,d)$ is [i]balanced [/i]if $$a+b+c+d=a^2+b^2+c^2+d^2.$$ Find all positive real numbers $x$ such that $$(x-a)(x-b)(x-c)(x-d)\geq 0$$ for every balanced quadruple $(a,b,c,d)$. \\ \\ (Ivan Novak)

2000 239 Open Mathematical Olympiad, 3

For all positive real numbers $a_1, a_2, \dots, a_n$, prove that $$ \frac{a_1\! +\! a_2}{2} \cdot \frac{a_2\! +\! a_3}{2} \cdot \dots \cdot \frac{a_n\! +\! a_1}{2} \leq \frac{a_1\!+\!a_2\!+\!a_3}{2 \sqrt{2}} \cdot \frac{a_2\!+\!a_3\!+\!a_4}{2 \sqrt{2}} \cdot \dots \cdot \frac{a_n\!+\!a_1\!+\!a_2}{2 \sqrt{2}}.$$

2011 Akdeniz University MO, 3

For all $x \geq 2$, $y \geq 2$ real numbers, prove that $$x(\frac{4x}{y-1}+\frac{1}{2y+x})+y(\frac{y}{6x-9}+\frac{1}{2x+y}) > \frac{26}{3}$$

2006 Bosnia and Herzegovina Team Selection Test, 3

Prove that for every positive integer $n$ holds inequality $\{n\sqrt{7}\}>\frac{3\sqrt{7}}{14n}$, where $\{x\}$ is fractional part of $x$.

2019 Baltic Way, 1

For all non-negative real numbers $x,y,z$ with $x \geq y$, prove the inequality $$\frac{x^3-y^3+z^3+1}{6}\geq (x-y)\sqrt{xyz}.$$

2015 Turkmenistan National Math Olympiad, 4

Find the max and minimum without using dervivate: $\sqrt{x} +4 \cdot \sqrt{\frac{1}{2} - x}$

2021 Azerbaijan Junior NMO, 3

Tags: inequality
$a,b,c $ are positive real numbers . Prove that $\sqrt[7]{\frac{a}{b+c}+\frac{b}{c+a}} +\sqrt[7]{\frac{b}{c+a}+\frac{c}{b+a}}+\sqrt[7]{\frac{c}{a+b}+\frac{a}{b+c}}\geq 3$

2021 IMO Shortlist, A7

Let $n\geqslant 1$ be an integer, and let $x_0,x_1,\ldots,x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_ix_{i+1}-x_{i-1}^2\geqslant 1$ for all $i=1,2,\ldots,n.$ Show that \[x_0+x_1+\cdots+x_n+x_{n+1}>\bigg(\frac{2n}{3}\bigg)^{3/2}.\][i]Pakawut Jiradilok and Wijit Yangjit, Thailand[/i]

2019 Serbia JBMO TST, 2

If a b c positive reals smaller than 1, prove: a+b+c+2abc>ab+bc+ca+2(abc)^(1/2)

1983 IMO Shortlist, 9

Let $ a$, $ b$ and $ c$ be the lengths of the sides of a triangle. Prove that \[ a^{2}b(a \minus{} b) \plus{} b^{2}c(b \minus{} c) \plus{} c^{2}a(c \minus{} a)\ge 0. \] Determine when equality occurs.

2016 Macedonia JBMO TST, 4

Let $x$, $y$, and $z$ be positive real numbers. Prove that $\sqrt {\frac {xy}{x^2 + y^2 + 2z^2}} + \sqrt {\frac {yz}{y^2 + z^2 + 2x^2}}+\sqrt {\frac {zx}{z^2 + x^2 + 2y^2}} \le \frac{3}{2}$. When does equality hold?

KoMaL A Problems 2022/2023, A. 852

Let $(a_i,b_i)$ be pairwise distinct pairs of positive integers for $1\le i\le n$. Prove that \[(a_1+a_2+\ldots+a_n)(b_1+b_2+\ldots+b_n)>\frac29 n^3,\] and show that the statement is sharp, i.e. for an arbitrary $c>\frac29$ it is possible that \[(a_1+a_2+\ldots+a_n)(b_1+b_2+\ldots+b_n)<cn^3.\] [i]Submitted by Péter Pál Pach, Budapest, based on an OKTV problem[/i]

1980 IMO, 2

Define the numbers $a_0, a_1, \ldots, a_n$ in the following way: \[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \] Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]

2021 China Team Selection Test, 4

Proof that $$ \sum_{m=1}^n5^{\omega (m)} \le \sum_{k=1}^n\lfloor \frac{n}{k} \rfloor \tau (k)^2 \le \sum_{m=1}^n5^{\Omega (m)} .$$

1969 IMO Longlists, 66

$(USS 3)$ $(a)$ Prove that if $0 \le a_0 \le a_1 \le a_2,$ then $(a_0 + a_1x - a_2x^2)^2 \le (a_0 + a_1 + a_2)^2\left(1 +\frac{1}{2}x+\frac{1}{3}x^2+\frac{1}{2}x^3+x^4\right)$ $(b)$ Formulate and prove the analogous result for polynomials of third degree.

2004 Brazil Team Selection Test, Problem 1

Let $x,y,z$ be positive numbers such that $x^2+y^2+z^2=1$. Prove that $$\frac x{1-x^2}+\frac y{1-y^2}+\frac z{1-z^2}\ge\frac{3\sqrt3}2$$

2025 6th Memorial "Aleksandar Blazhevski-Cane", P4

Prove that for all real numbers $a, b, c > 1$ the inequality \[a(b^2 + c) + b(c^2 + a) + c(a^2 + b) \ge a^2 + b^2 + c^2 + 3abc\] holds. When does equality hold? Proposed by [i]Ilija Jovcevski[/i]