This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2015 Iran Team Selection Test, 6

If $a,b,c$ are positive real numbers such that $a+b+c=abc$ prove that $$\frac{abc}{3\sqrt{2}}\left ( \sum_{cyc}\frac{\sqrt{a^3+b^3}}{ab+1} \right )\geq \sum_{cyc}\frac{a}{a^2+1}$$

2021 Macedonian Mathematical Olympiad, Problem 1

Let $(a_n)^{+\infty}_{n=1}$ be a sequence defined recursively as follows: $a_1=1$ and $$a_{n+1}=1 + \sum\limits_{k=1}^{n}ka_k$$ For every $n > 1$, prove that $\sqrt[n]{a_n} < \frac {n+1}{2}$.

1998 All-Russian Olympiad, 4

Let $k$ be a positive integer. Some of the $2k$-element subsets of a given set are marked. Suppose that for any subset of cardinality less than or equal to $(k+1)^2$ all the marked subsets contained in it (if any) have a common element. Show that all the marked subsets have a common element.

2022 Indonesia TST, A

Let $a, b, c$ be positive real numbers such that $abc = 1$. Prove that $$(a + b + c)(ab + bc + ca) + 3\ge 4(a + b + c).$$

2002 Canada National Olympiad, 3

Prove that for all positive real numbers $a$, $b$, and $c$, \[ \frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab} \geq a+b+c \] and determine when equality occurs.

2023 Taiwan TST Round 3, 4

Find all positive integers $a$, $b$ and $c$ such that $ab$ is a square, and \[a+b+c-3\sqrt[3]{abc}=1.\] [i]Proposed by usjl[/i]

2023 India Regional Mathematical Olympiad, 5

Let $n>k>1$ be positive integers. Determine all positive real numbers $a_1, a_2, \ldots, a_n$ which satisfy $$ \sum_{i=1}^n \sqrt{\frac{k a_i^k}{(k-1) a_i^k+1}}=\sum_{i=1}^n a_i=n . $$

2019 NMTC Junior, 7

The perimeter of $\triangle ABC$ is $2$ and it's sides are $BC=a, CA=b,AB=c$. Prove that $$abc+\frac{1}{27}\ge ab+bc+ca-1\ge abc. $$

2023 UMD Math Competition Part II, 5

Let $0 \le a_1 \le a_2 \le \dots \le a_n \le 1$ be $n$ real numbers with $n \ge 2$. Assume $a_1 + a_2 + \dots + a_n \ge n-1$. Prove that \[ a_2a_3\dots a_n \ge \left( 1 - \frac 1n \right)^{n-1} \]

2007 Nicolae Păun, 4

Prove that for any natural number $ n, $ there exists a number having $ n+1 $ decimal digits, namely, $ k_0,k_1,k_2,\ldots ,k_n $, and a $ \text{(n+1)-tuple}, $ say $\left( \epsilon_0 ,\epsilon_1 ,\epsilon_2\ldots ,\epsilon_n \right)\in\{-1,1\}^{n+1} , $ that satisfies: $$ 1\le \prod_{j=0}^n (2+j)^{k_j\cdot \epsilon_j}\le \sqrt[10^n-1]{2} $$ [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

2010 Victor Vâlcovici, 2

$ \sum_{cyc}\frac{1}{\left(\text{tg} y+\text{tg} z\right) \text{cos}^2 x} \ge 3, $ for any $ x,y,z\in (0,\pi/2) $ [i]Carmen[/i] and [i]Viorel Botea[/i]

Maryland University HSMC part II, 2023.5

Let $0 \le a_1 \le a_2 \le \dots \le a_n \le 1$ be $n$ real numbers with $n \ge 2$. Assume $a_1 + a_2 + \dots + a_n \ge n-1$. Prove that \[ a_2a_3\dots a_n \ge \left( 1 - \frac 1n \right)^{n-1} \]

2015 Iran Team Selection Test, 6

If $a,b,c$ are positive real numbers such that $a+b+c=abc$ prove that $$\frac{abc}{3\sqrt{2}}\left ( \sum_{cyc}\frac{\sqrt{a^3+b^3}}{ab+1} \right )\geq \sum_{cyc}\frac{a}{a^2+1}$$

2017 Iran MO (3rd round), 3

Let $a,b$ and $c$ be positive real numbers. Prove that $$\sum_{cyc} \frac {a^3b}{(3a+2b)^3} \ge \sum_{cyc} \frac {a^2bc}{(2a+2b+c)^3} $$

2022 Bundeswettbewerb Mathematik, 1

Tags: am-gm , algebra
Find all quadrupels $(a, b, c, d)$ of positive real numbers that satisfy the following two equations: \begin{align*} ab + cd &= 8,\\ abcd &= 8 + a + b + c + d. \end{align*}

2019 Centers of Excellency of Suceava, 1

Prove that $ \binom{m+n}{\min (m,n)}\le \sqrt{\binom{2m}{m}\cdot \binom{2n}{n}} , $ for nonnegative $ m,n. $ [i]Gheorghe Stoica[/i]

2021 Cyprus JBMO TST, 1

Let $x,y,z$ be positive real numbers such that $x^2+y^2+z^2=3$. Prove that \[ xyz(x+y+z)+2021\geqslant 2024xyz\]

2022 Bulgaria JBMO TST, 2

Let $a$, $b$ and $c$ be positive real numbers with $abc = 1$. Determine the minimum possible value of $$ \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right) \cdot \left(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\right) $$ as well as all triples $(a,b,c)$ which attain the minimum.

2013 AMC 12/AHSME, 17

Let $a,b,$ and $c$ be real numbers such that \begin{align*} a+b+c &= 2, \text{ and} \\ a^2+b^2+c^2&= 12 \end{align*} What is the difference between the maximum and minimum possible values of $c$? $ \textbf{(A)}\ 2\qquad\textbf{(B)}\ \frac{10}{3}\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ \frac{16}{3}\qquad\textbf{(E)}\ \frac{20}{3} $

2022 Cyprus JBMO TST, 3

If $a,b,c$ are positive real numbers with $abc=1$, prove that (a) \[2\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right) \geqslant \frac{9}{ab+bc+ca}\] (b)\[2\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right) \geqslant \frac{9}{a^2 b+b^2 c+c^2 a}\]

2019 India Regional Mathematical Olympiad, 3

Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that $$\frac{a}{a^2+b^3+c^3}+\frac{b}{b^2+a^3+c^3}+\frac{c}{c^2+a^3+b^3}\leq\frac{1}{5abc}$$

2021 Hong Kong TST, 1

Tags: algebra , am-gm , equation
Find all real triples $(a,b,c)$ satisfying \[(2^{2a}+1)(2^{2b}+2)(2^{2c}+8)=2^{a+b+c+5}.\]

2016 AMC 10, 17

Tags: geometry , am-gm
All the numbers $2, 3, 4, 5, 6, 7$ are assigned to the six faces of a cube, one number to each face. For each of the eight vertices of the cube, a product of three numbers is computed, where the three numbers are the numbers assigned to the three faces that include that vertex. What is the greatest possible value of the sum of these eight products? $\textbf{(A)}\ 312 \qquad \textbf{(B)}\ 343 \qquad \textbf{(C)}\ 625 \qquad \textbf{(D)}\ 729 \qquad \textbf{(E)}\ 1680$

2015 India Regional MathematicaI Olympiad, 1

Let $ABCD$ be a convex quadrilateral with $AB=a$, $BC=b$, $CD=c$ and $DA=d$. Suppose \[a^2+b^2+c^2+d^2=ab+bc+cd+da,\] and the area of $ABCD$ is $60$ sq. units. If the length of one of the diagonals is $30$ units, determine the length of the other diagonal.

2006 Petru Moroșan-Trident, 3

Let a ,b and c be positive real numbers such that $a^2+b^2+c^2=3$. Prove that for whatever positive real numbers x y and z, the inequality below holds. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\ge \sqrt{xy}+\sqrt{yz}+\sqrt{zx}$ At first I noticed $\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le \sqrt{x+y+z}\sqrt{x+y+z}=x+y+z$, so perhaps the next move is to prove $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\ge x+y+z$, but I don't see how to do that, the best thing that I can do with the LHS of this inequality is to prove it by AM-GM in the way that $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\ge 3\left(\frac{xyz}{abc}\right)^{\frac{1}{3}}\ge 3(xyz)^{\frac{1}{3}}$, but this isn't going to be helpful...