This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2022 Cyprus JBMO TST, 3

If $a,b,c$ are positive real numbers with $abc=1$, prove that (a) \[2\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right) \geqslant \frac{9}{ab+bc+ca}\] (b)\[2\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right) \geqslant \frac{9}{a^2 b+b^2 c+c^2 a}\]

2022 Bundeswettbewerb Mathematik, 1

Tags: algebra , am-gm
Find all quadrupels $(a, b, c, d)$ of positive real numbers that satisfy the following two equations: \begin{align*} ab + cd &= 8,\\ abcd &= 8 + a + b + c + d. \end{align*}

2023 UMD Math Competition Part II, 5

Let $0 \le a_1 \le a_2 \le \dots \le a_n \le 1$ be $n$ real numbers with $n \ge 2$. Assume $a_1 + a_2 + \dots + a_n \ge n-1$. Prove that \[ a_2a_3\dots a_n \ge \left( 1 - \frac 1n \right)^{n-1} \]

2021 Cyprus JBMO TST, 1

Let $x,y,z$ be positive real numbers such that $x^2+y^2+z^2=3$. Prove that \[ xyz(x+y+z)+2021\geqslant 2024xyz\]

Maryland University HSMC part II, 2023.5

Let $0 \le a_1 \le a_2 \le \dots \le a_n \le 1$ be $n$ real numbers with $n \ge 2$. Assume $a_1 + a_2 + \dots + a_n \ge n-1$. Prove that \[ a_2a_3\dots a_n \ge \left( 1 - \frac 1n \right)^{n-1} \]

2018 Middle European Mathematical Olympiad, 1

Let $a,b$ and $c$ be positive real numbers satisfying $abc=1.$ Prove that$$\frac{a^2-b^2}{a+bc}+\frac{b^2-c^2}{b+ca}+\frac{c^2-a^2}{c+ab}\leq a+b+c-3.$$

2012 Gheorghe Vranceanu, 2

With positive $ a,b,c, $ prove: $$ \frac{a}{8a^2+5b^2+3c^2} +\frac{b}{8b^2+5c^2+3a^2} +\frac{c}{8c^2+5a^2+3b^2}\le\frac{1}{16}\left( \frac{1}{a} +\frac{1}{b} +\frac{1}{c} \right) $$ [i]Titu Zvonaru[/i]

2011 Gheorghe Vranceanu, 2

$ a>0,\quad\lim_{n\to\infty }\sum_{i=1}^n \frac{1}{n+a^i} $

2016 AMC 10, 17

Tags: geometry , am-gm
All the numbers $2, 3, 4, 5, 6, 7$ are assigned to the six faces of a cube, one number to each face. For each of the eight vertices of the cube, a product of three numbers is computed, where the three numbers are the numbers assigned to the three faces that include that vertex. What is the greatest possible value of the sum of these eight products? $\textbf{(A)}\ 312 \qquad \textbf{(B)}\ 343 \qquad \textbf{(C)}\ 625 \qquad \textbf{(D)}\ 729 \qquad \textbf{(E)}\ 1680$

2017 Iran MO (3rd round), 3

Let $a,b$ and $c$ be positive real numbers. Prove that $$\sum_{cyc} \frac {a^3b}{(3a+2b)^3} \ge \sum_{cyc} \frac {a^2bc}{(2a+2b+c)^3} $$

2021 Macedonian Mathematical Olympiad, Problem 1

Let $(a_n)^{+\infty}_{n=1}$ be a sequence defined recursively as follows: $a_1=1$ and $$a_{n+1}=1 + \sum\limits_{k=1}^{n}ka_k$$ For every $n > 1$, prove that $\sqrt[n]{a_n} < \frac {n+1}{2}$.

2021-IMOC, A6

Let $n$ be some positive integer and $a_1 , a_2 , \dots , a_n$ be real numbers. Denote $$S_0 = \sum_{i=1}^{n} a_i^2 , \hspace{1cm} S_1 = \sum_{i=1}^{n} a_ia_{i+1} , \hspace{1cm} S_2 = \sum_{i=1}^{n} a_ia_{i+2},$$ where $a_{n+1} = a_1$ and $a_{n+2} = a_2.$ 1. Show that $S_0 - S_1 \geq 0$. 2. Show that $3$ is the minimum value of $C$ such that for any $n$ and $a_1 , a_2 , \dots , a_n,$ there holds $C(S_0 - S_1) \geq S_1 - S_2$.

2007 Nicolae Păun, 4

Prove that for any natural number $ n, $ there exists a number having $ n+1 $ decimal digits, namely, $ k_0,k_1,k_2,\ldots ,k_n $, and a $ \text{(n+1)-tuple}, $ say $\left( \epsilon_0 ,\epsilon_1 ,\epsilon_2\ldots ,\epsilon_n \right)\in\{-1,1\}^{n+1} , $ that satisfies: $$ 1\le \prod_{j=0}^n (2+j)^{k_j\cdot \epsilon_j}\le \sqrt[10^n-1]{2} $$ [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

2023 India Regional Mathematical Olympiad, 5

Let $n>k>1$ be positive integers. Determine all positive real numbers $a_1, a_2, \ldots, a_n$ which satisfy $$ \sum_{i=1}^n \sqrt{\frac{k a_i^k}{(k-1) a_i^k+1}}=\sum_{i=1}^n a_i=n . $$

2019 India Regional Mathematical Olympiad, 3

Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that $$\frac{a}{a^2+b^3+c^3}+\frac{b}{b^2+a^3+c^3}+\frac{c}{c^2+a^3+b^3}\leq\frac{1}{5abc}$$

2020-IMOC, A1

$\definecolor{A}{RGB}{190,0,60}\color{A}\fbox{A1.}$ Find all $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $$\definecolor{A}{RGB}{80,0,200}\color{A} x^4+y^4+z^4\ge f(xy)+f(yz)+f(zx)\ge xyz(x+y+z)$$holds for all $a,b,c\in\mathbb{R}$. [i]Proposed by [/i][b][color=#FFFF00]usjl[/color][/b]. [color=#B6D7A8]#1733[/color]

2022 Bulgaria JBMO TST, 2

Let $a$, $b$ and $c$ be positive real numbers with $abc = 1$. Determine the minimum possible value of $$ \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right) \cdot \left(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\right) $$ as well as all triples $(a,b,c)$ which attain the minimum.

2021 Hong Kong TST, 1

Tags: am-gm , equation , algebra
Find all real triples $(a,b,c)$ satisfying \[(2^{2a}+1)(2^{2b}+2)(2^{2c}+8)=2^{a+b+c+5}.\]

2025 Malaysian IMO Team Selection Test, 3

Let $\mathbb R$ be the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ where there exist a real constant $c\ge 0$ such that $$x^3+y^2f(y)+zf(z^2)\ge cf(xyz)$$ holds for all reals $x$, $y$, $z$ that satisfy $x+y+z\ge 0$. [i]Proposed by Ivan Chan Kai Chin[/i]

2015 Iran Team Selection Test, 6

If $a,b,c$ are positive real numbers such that $a+b+c=abc$ prove that $$\frac{abc}{3\sqrt{2}}\left ( \sum_{cyc}\frac{\sqrt{a^3+b^3}}{ab+1} \right )\geq \sum_{cyc}\frac{a}{a^2+1}$$

2016 India Regional Mathematical Olympiad, 5

Let $x,y,z$ be non-negative real numbers such that $xyz=1$. Prove that $$(x^3+2y)(y^3+2z)(z^3+2x) \ge 27.$$

2022 Indonesia TST, A

Let $a, b, c$ be positive real numbers such that $abc = 1$. Prove that $$(a + b + c)(ab + bc + ca) + 3\ge 4(a + b + c).$$

2015 India Regional MathematicaI Olympiad, 1

Let $ABCD$ be a convex quadrilateral with $AB=a$, $BC=b$, $CD=c$ and $DA=d$. Suppose \[a^2+b^2+c^2+d^2=ab+bc+cd+da,\] and the area of $ABCD$ is $60$ sq. units. If the length of one of the diagonals is $30$ units, determine the length of the other diagonal.

2019 NMTC Junior, 7

The perimeter of $\triangle ABC$ is $2$ and it's sides are $BC=a, CA=b,AB=c$. Prove that $$abc+\frac{1}{27}\ge ab+bc+ca-1\ge abc. $$

2013 AMC 12/AHSME, 17

Let $a,b,$ and $c$ be real numbers such that \begin{align*} a+b+c &= 2, \text{ and} \\ a^2+b^2+c^2&= 12 \end{align*} What is the difference between the maximum and minimum possible values of $c$? $ \textbf{(A)}\ 2\qquad\textbf{(B)}\ \frac{10}{3}\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ \frac{16}{3}\qquad\textbf{(E)}\ \frac{20}{3} $