This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2020 IMO Shortlist, A3

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

2013 Kyiv Mathematical Festival, 1

For every positive $a, b, c, d$ such that $a + c\le ac$ and $b + d \le bd$ prove that $ab + cd \ge 8$.

2021 IMC, 7

Let $D \subseteq \mathbb{C}$ be an open set containing the closed unit disk $\{z : |z| \leq 1\}$. Let $f : D \rightarrow \mathbb{C}$ be a holomorphic function, and let $p(z)$ be a monic polynomial. Prove that $$ |f(0)| \leq \max_{|z|=1} |f(z)p(z)| $$

2001 China Team Selection Test, 2

Let $\theta_i \in \left ( 0,\frac{\pi}{4} \right ]$ for $i=1,2,3,4$. Prove that: $\tan \theta _1 \tan \theta _2 \tan \theta _3 \tan \theta _4 \le (\frac{\sin^8 \theta _1+\sin^8 \theta _2+\sin^8 \theta _3+\sin^8 \theta _4}{\cos^8 \theta _1+\cos^8 \theta _2+\cos^8 \theta _3+\cos^8 \theta _4})^\frac{1}{2}$ [hide=edit]@below, fixed now. There were some problems (weird characters) so aops couldn't send it.[/hide]

2009 Korea Junior Math Olympiad, 3

For two arbitrary reals $x, y$ which are larger than $0$ and less than $1.$ Prove that$$\frac{x^2}{x+y}+\frac{y^2}{1-x}+\frac{(1-x-y)^2}{1-y}\geq\frac{1}{2}.$$

2012 Middle European Mathematical Olympiad, 1

Let $ \mathbb{R} ^{+} $ denote the set of all positive real numbers. Find all functions $ \mathbb{R} ^{+} \to \mathbb{R} ^{+} $ such that \[ f(x+f(y)) = yf(xy+1)\] holds for all $ x, y \in \mathbb{R} ^{+} $.

2007 Junior Macedonian Mathematical Olympiad, 4

The numbers $a_{1}, a_{2}, ..., a_{20}$ satisfy the following conditions: $a_{1} \ge a_{2} \ge ... \ge a_{20} \ge 0$ $a_{1} + a_{2} = 20$ $a_{3} + a_{4} + ... + a_{20} \le 20$ . What is maximum value of the expression: $a_{1}^2 + a_{2}^2 + ... + a_{20}^2$ ? For which values of $a_{1}, a_{2}, ..., a_{20}$ is the maximum value achieved?

2014 JBMO Shortlist, 7

$a,b,c\in\mathbb{R^+}$ and $a^2+b^2+c^2=48$. Prove that \[a^2\sqrt{2b^3+16}+b^2\sqrt{2c^3+16}+c^2\sqrt{2a^3+16}\le24^2\]

2010 Saint Petersburg Mathematical Olympiad, 6

For positive numbers is true that $$ab+ac+bc=a+b+c$$ Prove $$a+b+c+1 \geq 4abc$$

2005 Uzbekistan National Olympiad, 1

Given a,b c are lenth of a triangle (If ABC is a triangle then AC=b, BC=a, AC=b) and $a+b+c=2$. Prove that $1+abc<ab+bc+ca\leq \frac{28}{27}+abc$

1998 IMO, 2

In a contest, there are $m$ candidates and $n$ judges, where $n\geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most $k$ candidates. Prove that \[{\frac{k}{m}} \geq {\frac{n-1}{2n}}. \]

2013 Bosnia And Herzegovina - Regional Olympiad, 1

If $a$, $b$ and $c$ are nonnegative real numbers such that $a^2+b^2+c^2=1$, prove that $$\frac{1}{2} \leq \frac{a}{1+a^4}+\frac{b}{1+b^4}+\frac{c}{1+c^4} \leq \frac{9\sqrt{3}}{10}$$

2020 Regional Olympiad of Mexico Southeast, 5

Let $ABC$ an acute triangle with $\angle BAC\geq 60^\circ$ and $\Gamma$ it´s circumcircule. Let $P$ the intersection of the tangents to $\Gamma$ from $B$ and $C$. Let $\Omega$ the circumcircle of the triangle $BPC$. The bisector of $\angle BAC$ intersect $\Gamma$ again in $E$ and $\Omega$ in $D$, in the way that $E$ is between $A$ and $D$. Prove that $\frac{AE}{ED}\leq 2$ and determine when equality holds.

2025 239 Open Mathematical Olympiad, 7

Point $M$ is the midpoint of side $BC$ of an acute—angled triangle $ABC$. The point $U$ is symmetric to the orthocenter $ABC$ relative to its circumcenter. The point $S$ inside triangle $ABC$ is such that $US = UM$. Prove that $SA + SB + SC + AM < AB + BC + CA$.

2021 Science ON all problems, 3

Real numbers $a,b,c$ with $0\le a,b,c\le 1$ satisfy the condition $$a+b+c=1+\sqrt{2(1-a)(1-b)(1-c)}.$$ Prove that $$\sqrt{1-a^2}+\sqrt{1-b^2}+\sqrt{1-c^2}\le \frac{3\sqrt 3}{2}.$$ [i] (Nora Gavrea)[/i]

2018 South East Mathematical Olympiad, 1

Assume $c$ is a real number. If there exists $x\in[1,2]$ such that $\max\left\{\left |x+\frac cx\right |, \left |x+\frac cx + 2\right |\right\}\geq 5$, please find the value range of $c$.

2014 Korea Junior Math Olympiad, 2

Let there be $2n$ positive reals $a_1,a_2,...,a_{2n}$. Let $s = a_1 + a_3 +...+ a_{2n-1}$, $t = a_2 + a_4 + ... + a_{2n}$, and $x_k = a_k + a_{k+1} + ... + a_{k+n-1}$ (indices are taken modulo $2n$). Prove that $$\frac{s}{x_1}+\frac{t}{x_2}+\frac{s}{x_3}+\frac{t}{x_4}+...+\frac{s}{x_{2n-1}}+\frac{t}{x_{2n}}>\frac{2n^2}{n+1}$$

2003 Bosnia and Herzegovina Team Selection Test, 3

Prove that for every positive integer $n$ holds: $(n-1)^n+2n^n \leq (n+1)^{n} \leq 2(n-1)^n+2n^{n}$

1987 Bundeswettbewerb Mathematik, 4

Let $1<k\leq n$ be positive integers and $x_1 , x_2 , \ldots , x_k$ be positive real numbers such that $x_1 \cdot x_2 \cdot \ldots \cdot x_k = x_1 + x_2 + \ldots +x_k.$ a) Show that $x_{1}^{n-1} +x_{2}^{n-1} + \ldots +x_{k}^{n-1} \geq kn.$ b) Find all numbers $k,n$ and $x_1, x_2 ,\ldots , x_k$ for which equality holds.

1987 IMO Shortlist, 6

Show that if $a, b, c$ are the lengths of the sides of a triangle and if $2S = a + b + c$, then \[\frac{a^n}{b+c} + \frac{b^n}{c+a} +\frac{c^n}{a+b} \geq \left(\dfrac 23 \right)^{n-2}S^{n-1} \quad \forall n \in \mathbb N \] [i]Proposed by Greece.[/i]

2016 Balkan MO Shortlist, A2

For all $x,y,z>0$ satisfying $\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}\le x+y+z$, prove that $$\frac{1}{x^2+y+z}+\frac{1}{y^2+z+x}+\frac{1}{z^2+x+y} \le 1$$

1998 IMO Shortlist, 3

Let $x,y$ and $z$ be positive real numbers such that $xyz=1$. Prove that \[ \frac{x^{3}}{(1 + y)(1 + z)}+\frac{y^{3}}{(1 + z)(1 + x)}+\frac{z^{3}}{(1 + x)(1 + y)} \geq \frac{3}{4}. \]

2005 China Second Round Olympiad, 2

Assume that positive numbers $a, b, c, x, y, z$ satisfy $cy + bz = a$, $az + cx = b$, and $bx + ay = c$. Find the minimum value of the function \[ f(x, y, z) = \frac{x^2}{x+1} + \frac {y^2}{y+1} + \frac{z^2}{z+1}. \]

1987 IMO Longlists, 33

Show that if $a, b, c$ are the lengths of the sides of a triangle and if $2S = a + b + c$, then \[\frac{a^n}{b+c} + \frac{b^n}{c+a} +\frac{c^n}{a+b} \geq \left(\dfrac 23 \right)^{n-2}S^{n-1} \quad \forall n \in \mathbb N \] [i]Proposed by Greece.[/i]

1983 IMO Longlists, 60

Find the greatest integer less than or equal to $\sum_{k=1}^{2^{1983}} k^{\frac{1}{1983} -1}.$