This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

2016 JBMO Shortlist, 1

Let $a, b, c$ be positive real numbers such that $abc = 8$. Prove that $\frac{ab + 4}{a + 2}+\frac{bc + 4}{b + 2}+\frac{ca + 4}{c + 2}\ge 6$.

1983 Czech and Slovak Olympiad III A, 2

Given a triangle $ABC$, prove that for every inner point $P$ of the side $AB$ the inequality $$PC\cdot AB<PA\cdot BC+PB\cdot AC$$ holds.

2024 Korea National Olympiad, 5

Tags: inequality
Find the smallest real number $M$ such that $$\sum_{k = 1}^{99}\frac{a_{k+1}}{a_k+a_{k+1}+a_{k+2}} < M$$ for all positive real numbers $a_1, a_2, \dots, a_{99}$. ($a_{100} = a_1, a_{101} = a_2$)

2004 USAMO, 5

Let $a, b, c > 0$. Prove that $(a^5 - a^2 + 3)(b^5 - b^2 + 3)(c^5 - c^2 + 3) \geq (a + b + c)^3$.

2020 India National Olympiad, 4

Let $n \geqslant 2$ be an integer and let $1<a_1 \le a_2 \le \dots \le a_n$ be $n$ real numbers such that $a_1+a_2+\dots+a_n=2n$. Prove that$$a_1a_2\dots a_{n-1}+a_1a_2\dots a_{n-2}+\dots+a_1a_2+a_1+2 \leqslant a_1a_2\dots a_n.$$ [i]Proposed by Kapil Pause[/i]

2005 Korea Junior Math Olympiad, 7

If positive reals $ x_1,x_2,\cdots,x_n $ satisfy $\sum_{i=1}^{n}x_i=1.$ Prove that$$\sum_{i=1}^{n}\frac{1}{1+\sum_{j=1}^{i}x_j}<\sqrt{\frac{2}{3}\sum_{i=1}^{n}\frac{1}{x_i}} $$

2009 Korea Junior Math Olympiad, 6

If positive reals $a,b,c,d$ satisfy $abcd = 1.$ Prove the following inequality $$1<\frac{b}{ab+b+1}+\frac{c}{bc+c+1}+\frac{d}{cd+d+1}+\frac{a}{da+a+1}<2.$$

2024 Belarusian National Olympiad, 11.7

Positive real numbers $a_1,a_2,\ldots, a_n$ satisfy the equation $$2a_1+a_2+\ldots+a_{n-1}=a_n+\frac{n^2-3n+2}{2}$$ For every positive integer $n \geq 3$ find the smallest possible value of the sum $$\frac{(a_1+1)^2}{a_2}+\ldots+\frac{(a_{n-1}+1)^2}{a_n}$$ [i]M. Zorka[/i]

2021 Serbia JBMO TSTs, 1

Prove that for positive real numbers $a, b, c$ the following inequality holds: \begin{align*} \frac{a}{9bc+1}+\frac{b}{9ca+1}+\frac{c}{9ab+1}\geq \frac{a+b+c}{1+(a+b+c)^2} \end{align*} When does equality occur?

2006 Singapore Team Selection Test, 2

Let n be an integer greater than 1 and let $x_1, x_2, . . . , x_n$ be real numbers such that $|x_1| + |x_2| + ... + |x_n| = 1$ and $x_1 + x_2 + ... + x_n = 0$ Prove that $\left| \frac{x_1}{1}+\frac{x_2}{2}+\cdots+\frac{x_n}{n} \right| \leq \frac{1}{2} \left(1-\frac{1}{n}\right)$

1985 IMO Shortlist, 18

Let $x_1, x_2, \cdots , x_n$ be positive numbers. Prove that \[\frac{x_1^2}{x_1^2+x_2x_3} + \frac{x_2^2}{x_2^2+x_3x_4} + \cdots +\frac{x_{n-1}^2}{x_{n-1}^2+x_nx_1} +\frac{x_n^2}{x_n^2+x_1x_2} \leq n-1\]

1975 IMO Shortlist, 14

Let $x_0 = 5$ and $x_{n+1} = x_n + \frac{1}{x_n} \ (n = 0, 1, 2, \ldots )$. Prove that \[45 < x_{1000} < 45. 1.\]

2025 JBMO TST - Turkey, 6

Find the minimum value of \[\frac{x^3+1}{(y-1)(z+1)}+\frac{y^3+1}{(z-1)(x+1)}+\frac{z^3+1}{(x-1)(y+1)}\] where $x,y,z>1$ are reals.

2002 Rioplatense Mathematical Olympiad, Level 3, 2

Let $\lambda$ be a real number such that the inequality $0 <\sqrt {2002} - \frac {a} {b} <\frac {\lambda} {ab}$ holds for an infinite number of pairs $ (a, b)$ of positive integers. Prove that $\lambda \geq 5 $.

1987 Czech and Slovak Olympiad III A, 4

Given an integer $n\ge3$ consider positive integers $x_1,\ldots,x_n$ such that $x_1<x_2<\cdots<x_n<2x_1$. If $p$ is a prime and $r$ is a positive integer such that $p^r$ divides the product $x_1\cdots x_n$, prove that $$\frac{x_1\cdots x_n}{p^r}>n!.$$

2025 Taiwan Mathematics Olympiad, 2

Let $a, b, c, d$ be four positive reals such that $abc+abd+acd+bcd = 1$. Determine all possible values for $$(ab + cd)(ac + bd)(ad + bc).$$ [i]Proposed by usjl and YaWNeeT[/i]

2013 Vietnam Team Selection Test, 4

Find the greatest positive integer $k$ such that the following inequality holds for all $a,b,c\in\mathbb{R}^+$ satisfying $abc=1$ \[ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{k}{a+b+c+1}\geqslant 3+\frac{k}{4} \]

2021 Alibaba Global Math Competition, 6

Let $M(t)$ be measurable and locally bounded function, that is, \[M(t) \le C_{a,b}, \quad \forall 0 \le a \le t \le b<\infty\] with some constant $C_{a,b}$, from $[0,\infty)$ to $[0,\infty)$ such that \[M(t) \le 1+\int_0^t M(t-s)(1+t)^{-1}s^{-1/2} ds, \quad \forall t \ge 0.\] Show that \[M(t) \le 10+2\sqrt{5}, \quad \forall t \ge 0.\]

1972 IMO Shortlist, 3

The least number is $m$ and the greatest number is $M$ among $ a_1 ,a_2 ,\ldots,a_n$ satisfying $ a_1 \plus{}a_2 \plus{}...\plus{}a_n \equal{}0$. Prove that \[ a_1^2 \plus{}\cdots \plus{}a_n^2 \le\minus{}nmM\]

2016 Nigerian Senior MO Round 2, Problem 6

Given that $a, b, c, d \in \mathbb{R}$, prove that $(ab+cd)^2 \leq (a^2+c^2)(b^2+d^2)$.

1993 IMO Shortlist, 8

Let $c_1, \ldots, c_n \in \mathbb{R}$ with $n \geq 2$ such that \[ 0 \leq \sum^n_{i=1} c_i \leq n. \] Show that we can find integers $k_1, \ldots, k_n$ such that \[ \sum^n_{i=1} k_i = 0 \] and \[ 1-n \leq c_i + n \cdot k_i \leq n \] for every $i = 1, \ldots, n.$ [hide="Another formulation:"] Let $x_1, \ldots, x_n,$ with $n \geq 2$ be real numbers such that \[ |x_1 + \ldots + x_n| \leq n. \] Show that there exist integers $k_1, \ldots, k_n$ such that \[ |k_1 + \ldots + k_n| = 0. \] and \[ |x_i + 2 \cdot n \cdot k_i| \leq 2 \cdot n -1 \] for every $i = 1, \ldots, n.$ In order to prove this, denote $c_i = \frac{1+x_i}{2}$ for $i = 1, \ldots, n,$ etc. [/hide]

1989 IMO Longlists, 55

The set $ \{a_0, a_1, \ldots, a_n\}$ of real numbers satisfies the following conditions: [b](i)[/b] $ a_0 \equal{} a_n \equal{} 0,$ [b](ii)[/b] for $ 1 \leq k \leq n \minus{} 1,$ \[ a_k \equal{} c \plus{} \sum^{n\minus{}1}_{i\equal{}k} a_{i\minus{}k} \cdot \left(a_i \plus{} a_{i\plus{}1} \right)\] Prove that $ c \leq \frac{1}{4n}.$

2021 CHKMO, 4

Let $a,b$ and $c$ be positive real numbers satisfying $abc=1$. Prove that \[\dfrac{1}{a^3+2b^2+2b+4}+\dfrac{1}{b^3+2c^2+2c+4}+\dfrac{1}{c^3+2a^2+2a+4}\leq \dfrac13.\]

1967 IMO Shortlist, 6

Prove the following inequality: \[\prod^k_{i=1} x_i \cdot \sum^k_{i=1} x^{n-1}_i \leq \sum^k_{i=1} x^{n+k-1}_i,\] where $x_i > 0,$ $k \in \mathbb{N}, n \in \mathbb{N}.$

2021 Switzerland - Final Round, 4

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]