This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 27

2018 VJIMC, 2

Let $n$ be a positive integer and let $a_1\le a_2 \le \dots \le a_n$ be real numbers such that \[a_1+2a_2+\dots+na_n=0.\] Prove that \[a_1[x]+a_2[2x]+\dots+a_n[nx] \ge 0\] for every real number $x$. (Here $[t]$ denotes the integer satisfying $[t] \le t<[t]+1$.)

2000 Rioplatense Mathematical Olympiad, Level 3, 4

Let $a, b$ and $c$ be positive integers such that $a^2 + b^2 + 1 = c^2$ . Prove that $[a/2] + [c / 2]$ is even. Note: $[x]$ is the integer part of $x$.

2017 Romania National Olympiad, 1

Solve in the set of real numbers the equation $ a^{[ x ]} +\log_a\{ x \} =x , $ where $ a $ is a real number from the interval $ (0,1). $ $ [] $ and $ \{\} $ [i]denote the floor, respectively, the fractional part.[/i]

1990 Greece National Olympiad, 4

Froa nay real $x$, we denote $[x]$, the integer part of $x$ and with $\{x\}$ the fractional part of $x$, such that $x=[x]+\{x\}$. a) Find at least one real $x$ such that$\{x\}+\left\{\frac{1}{x}\right\}=1$ b) Find all rationals $x$ such that $\{x\}+\left\{\frac{1}{x}\right\}=1$

1985 Tournament Of Towns, (086) 2

The integer part $I (A)$ of a number $A$ is the greatest integer which is not greater than $A$ , while the fractional part $F(A)$ is defined as $A - I(A)$ . (a) Give an example of a positive number $A$ such that $F(A) + F( 1/A) = 1$ . (b) Can such an $A$ be a rational number? (I. Varge, Romania)

2019 District Olympiad, 4

Solve the equation in the set of real numbers: $$\left[ x+\frac{1}{x} \right] = \left[ x^2+\frac{1}{x^2} \right]$$ where $[a]$, represents the integer part of the real number $a$.

2011 District Olympiad, 4

Find all positive integers $m$ such that $$\{\sqrt{m}\} = \{\sqrt{m+ 2011}\}.$$

2012 District Olympiad, 1

Solve in $ \mathbb{R} $ the equation $ [x]^5+\{ x\}^5 =x^5, $ where $ [],\{\} $ are the integer part, respectively, the fractional part.

2013 Bogdan Stan, 2

Consider the parametric function $ f_k:\mathbb{R}\longrightarrow\mathbb{R}, f(x)=x+k\lfloor x \rfloor . $ [b]a)[/b] For which integer values of $ k $ the above function is injective? [b]b)[/b] For which integer values of $ k $ the above function is surjective? [b]c)[/b] Given two natural numbers $ n,m, $ create two bijective functions: $$ \phi : f_m (\mathbb{R} )\cap [0,\infty )\longrightarrow f_n(\mathbb{R})\cap [0,\infty ) $$ $$ \psi : \left(\mathbb{R}\setminus f_m (\mathbb{R})\right)\cap [0,\infty )\longrightarrow\left(\mathbb{R}\setminus f_n (\mathbb{R})\right)\cap [0,\infty ) $$ [i]Cristinel Mortici[/i]

2011 Laurențiu Duican, 1

Solve in the real numbers the equation $ 2^{1+x} =2^{[x]} +2^{\{x\}} , $ where $ [],\{\} $ deonotes the ineger and fractional part, respectively. [i]Aurel Bârsan[/i]

2006 Tournament of Towns, 3

The $n$-th digit of number $a = 0.12457...$ equals the first digit of the integer part of the number $n\sqrt2$. Prove that $a$ is irrational number. (6)

2012 India Regional Mathematical Olympiad, 3

Solve for real $x$ : $2^{2x} \cdot 2^{3\{x\}} = 11 \cdot 2^{5\{x\}} + 5 \cdot 2^{2[x]}$ (For a real number $x, [x]$ denotes the greatest integer less than or equal to x. For instance, $[2.5] = 2$, $[-3.1] = -4$, $[\pi ] = 3$. For a real number $x, \{x\}$ is defined as $x - [x]$.)

1985 Tournament Of Towns, (102) 6

The numerical sequence $x_1 , x_2 ,.. $ satisfies $x_1 = \frac12$ and $x_{k+1} =x^2_k+x_k$ for all natural integers $k$ . Find the integer part of the sum $\frac{1}{x_1+1}+\frac{1}{x_2+1}+...+\frac{1}{x_{100}+1}$ {A. Andjans, Riga)

2008 Gheorghe Vranceanu, 1

At what index the harmonic series has a fractional part of $ 1/12? $

2012 Postal Coaching, 3

Given an integer $n\ge 2$, prove that \[\lfloor \sqrt n \rfloor + \lfloor \sqrt[3]n\rfloor + \cdots +\lfloor \sqrt[n]n\rfloor = \lfloor \log_2n\rfloor + \lfloor \log_3n\rfloor + \cdots +\lfloor \log_nn\rfloor\]. [hide="Edit"] Thanks to shivangjindal for pointing out the mistake (and sorry for the late edit)[/hide]

2017 Pan-African Shortlist, A?

Find all the real numbers $x$ such that $\frac{1}{[x]}+\frac{1}{[2x]}=\{x\}+\frac{1}{3}$ where $[x]$ denotes the integer part of $x$ and $\{x\}=x-[x]$. For example, $[2.5]=2, \{2.5\} = 0.5$ and $[-1.7]= -2, \{-1.7\} = 0.3$

2015 District Olympiad, 2

Determine the real numbers $ a,b, $ such that $$ [ax+by]+[bx+ay]=(a+b)\cdot [x+y],\quad\forall x,y\in\mathbb{R} , $$ where $ [t] $ is the greatest integer smaller than $ t. $

1979 Vietnam National Olympiad, 5

Find all real numbers $k $ such that $x^2 - 2 x [x] + x - k = 0$ has at least two non-negative roots.

2017 India PRMO, 14

Suppose $x$ is a positive real number such that $\{x\}, [x]$ and $x$ are in a geometric progression. Find the least positive integer $n$ such that $x^n > 100$. (Here $[x]$ denotes the integer part of $x$ and $\{x\} = x - [x]$.)

2004 Alexandru Myller, 4

Find the real numbers $ x>1 $ having the property that $ \sqrt[n]{\lfloor x^n \rfloor } $ is an integer for any natural number $ n\ge 2. $ [i]Mihai Piticari[/i] and [i]Dan Popescu[/i]

2017 Pan African, Problem 4

Find all the real numbers $x$ such that $\frac{1}{[x]}+\frac{1}{[2x]}=\{x\}+\frac{1}{3}$ where $[x]$ denotes the integer part of $x$ and $\{x\}=x-[x]$. For example, $[2.5]=2, \{2.5\} = 0.5$ and $[-1.7]= -2, \{-1.7\} = 0.3$

1994 China National Olympiad, 5

For arbitrary natural number $n$, prove that $\sum^n_{k=0}C^k_n2^kC^{[(n-k)/2]}_{n-k}=C^n_{2n+1}$, where $C^0_0=1$ and $[\dfrac{n-k}{2}]$ denotes the integer part of $\dfrac{n-k}{2}$.

2013 Romania National Olympiad, 3

Find all real $x > 0$ and integer $n > 0$ so that $$ \lfloor x \rfloor+\left\{ \frac{1}{x}\right\}= 1.005 \cdot n.$$

2019 Centers of Excellency of Suceava, 2

For a natural number $ n\ge 2, $ calculate the integer part of $ \sqrt[n]{1+n}-\sqrt {2/n} . $ [i]Dan Nedeianu[/i]

2021 Bangladeshi National Mathematical Olympiad, 3

Let $r$ be a positive real number. Denote by $[r]$ the integer part of $r$ and by $\{r\}$ the fractional part of $r$. For example, if $r=32.86$, then $\{r\}=0.86$ and $[r]=32$. What is the sum of all positive numbers $r$ satisfying $25\{r\}+[r]=125$?