This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 30

2002 All-Russian Olympiad Regional Round, 11.1

The real numbers $x$ and $y$ are such that for any distinct odd primes $p$ and $q$ the number $x^p + y^q$ is rational. Prove that $x$ and $y$ are rational numbers.

1995 Poland - Second Round, 3

Let $a,b,c,d$ be positive irrational numbers with $a+b = 1$. Show that $c+d = 1$ if and only if $[na]+[nb] = [nc]+[nd]$ for all positive integers $n$.

2012 Thailand Mathematical Olympiad, 10

Let $x$ be an irrational number. Show that there are integers $m$ and $n$ such that $\frac{1}{2555}< mx + n <\frac{1}{2012}$

2011 Bosnia And Herzegovina - Regional Olympiad, 4

Prove that among any $6$ irrational numbers you can pick three numbers $a$, $b$ and $c$ such that numbers $a+b$, $b+c$ and $c+a$ are irrational

2012 Ukraine Team Selection Test, 6

For the positive integer $k$ we denote by the $a_n$ , the $k$ from the left digit in the decimal notation of the number $2^n$ ($a_n = 0$ if in the notation of the number $2^n$ less than the digits). Consider the infinite decimal fraction $a = \overline{0, a_1a_2a_3...}$. Prove that the number $a$ is irrational.

2008 Postal Coaching, 1

For each positive $ x \in \mathbb{R}$, define $ E(x)=\{[nx]: n\in \mathbb{N}\}$ Find all irrational $ \alpha >1$ with the following property: If a positive real $ \beta$ satisfies $ E(\beta) \subset E(\alpha)$. then $ \frac{\beta}{\alpha}$ is a natural number.

2017 Thailand Mathematical Olympiad, 1

Let $p$ be a prime. Show that $\sqrt[3]{p} +\sqrt[3]{p^5} $ is irrational.

1974 Putnam, B3

Tags: irrational , cosine
Prove that if $a$ is a real number such that $$\cos \pi a= \frac{1}{3},$$ then $a$ is irrational.

1980 Swedish Mathematical Competition, 1

Show that $\log_{10} 2$ is irrational.

1998 Estonia National Olympiad, 4

A real number $a$ satisfies the equality $\frac{1}{a} = a - [a]$. Prove that $a$ is irrational.

2024 ITAMO, 1

Let $x_0=2024^{2024}$ and $x_{n+1}=|x_n-\pi|$ for $n \ge 0$. Show that there exists a value of $n$ such that $x_{n+2}=x_n$.

1978 Chisinau City MO, 166

It is known that at least one coordinate of the center $(x_0, y_0)$ of the circle $(x -x_0)^2+ (y -y_0)^2 = R^2$ is irrational. Prove that on the circle itself there are at most two points with rational coordinates.

1989 All Soviet Union Mathematical Olympiad, 499

Do there exist two reals whose sum is rational, but the sum of their $n$ th powers is irrational for all $n > 1$? Do there exist two reals whose sum is irrational, but the sum of whose $n$ th powers is rational for all $n > 1$?

2015 China Northern MO, 2

As shown in figure , a circle of radius $1$ passes through vertex $A$ of $\vartriangle ABC$ and is tangent to the side $BC$ at the point $D$ , intersect sides $AB$ and $AC$ at points $E$ and $F$ respectively . Also$ EF$ bisects $\angle AFD$, and $\angle ADC = 80^o$ , Is there a triangle that satisfies the condition, so that $\frac{AB+BC+CA}{AD^2}$ is an irrational number, and the irrational number is the root of a quadratic equation with integral coefficients? If it does not exist, please prove it; if it exists, find the quadratic equation that satisfies the condition. [img]https://cdn.artofproblemsolving.com/attachments/b/9/9e3b955b6d6df35832dd0c0a2d1d2a1e1cce94.png[/img]

2001 Cuba MO, 5

Let $p$ and $q$ be two positive integers such that $1 \le q \le p$. Also let $a = \left( p +\sqrt{p^2 + q} \right)^2$. a) Prove that the number $a$ is irrational. b) Show that $\{a\} > 0.75$.

2020 LIMIT Category 1, 1

Tags: irrational , limit
If $a$ is a rational number and $b$ is an irrational number such that $ab$ is rational, then which of the following is false? (A)$ab^2$ is irrational (B)$a^2b$ is rational (C)$\sqrt{ab}$ is rational (D)$a+b$ is irrational

2012 Belarus Team Selection Test, 1

A cubic trinomial $x^3 + px + q$ with integer coefficients $p$ and $q$ is said to be [i]irrational [/i] if it has three pairwise distinct real irrational roots $a_1,a_2, a_3$ Find all irrational cubic trinomials for which the value of $|a_1| + [a_2| + |a_3|$ is the minimal possible. (E. Barabanov)

1998 Estonia National Olympiad, 3

In a triangle $ABC$, the bisector of the largest angle $\angle A$ meets $BC$ at point $D$. Let $E$ and $F$ be the feet of perpendiculars from $D$ to $AC$ and $AB$, respectively. Let $R$ denote the ratio between the areas of triangles $DEB$ and $DFC$. (a) Prove that, for every real number $r > 0$, one can construct a triangle ABC for which $R$ is equal to $r$. (b) Prove that if $R$ is irrational, then at least one side length of $\vartriangle ABC$ is irrational. (c) Give an example of a triangle $ABC$ with exactly two sides of irrational length, but with rational $R$.

2006 Tournament of Towns, 3

The $n$-th digit of number $a = 0.12457...$ equals the first digit of the integer part of the number $n\sqrt2$. Prove that $a$ is irrational number. (6)

1980 All Soviet Union Mathematical Olympiad, 303

The number $x$ from $[0,1]$ is written as an infinite decimal fraction. Having rearranged its first five digits after the point we can obtain another fraction that corresponds to the number $x_1$. Having rearranged five digits of $x_k$ from $(k+1)$-th till $(k+5)$-th after the point we obtain the number $x_{k+1}$. a) Prove that the sequence $x_i$ has limit. b) Can this limit be irrational if we have started with the rational number? c) Invent such a number, that always produces irrational numbers, no matter what digits were transposed.

1969 Swedish Mathematical Competition, 2

Show that $\tan \frac{\pi}{3n}$ is irrational for all positive integers $n$.

2002 Junior Balkan Team Selection Tests - Romania, 1

Let $a$ be an integer. Prove that for any real number $x, x^3 < 3$, both the numbers $\sqrt{3 -x^2}$ and $\sqrt{a - x^3}$ cannot be rational.

1992 Czech And Slovak Olympiad IIIA, 5

The function $f : (0,1) \to R$ is defined by $f(x) = x$ if $x$ is irrational, $f(x) = \frac{p+1}{q}$ if $x =\frac{p}{q}$ , where $(p,q) = 1$. Find the maximum value of $f$ on the interval $(7/8,8/9)$.

2000 All-Russian Olympiad Regional Round, 8.1

Non-zero numbers $a$ and $b$ satisfy the equality $$a^2b^2(a^2b^2 + 4) = 2(a^6 + b^6).$$ Prove that at least one of them is irrational.

1976 Poland - Second Round, 5

Prove that if $ \cos \pi x =\frac{1}{3} $ then $ x $ is an irrational number.