This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 89

2001 IMO Shortlist, 5

Find all positive integers $a_1, a_2, \ldots, a_n$ such that \[ \frac{99}{100} = \frac{a_0}{a_1} + \frac{a_1}{a_2} + \cdots + \frac{a_{n-1}}{a_n}, \] where $a_0 = 1$ and $(a_{k+1}-1)a_{k-1} \geq a_k^2(a_k - 1)$ for $k = 1,2,\ldots,n-1$.

1996 Taiwan National Olympiad, 5

Dertemine integers $a_{1},a_{2},...,a_{99}=a_{0}$ satisfying $|a_{k}-a_{k-1}|\geq 1996$ for all $k=1,2,...,99$, such that $m=\max_{1\leq k\leq 99} |a_{k}-a_{k-1}|$ is minimum possible, and find the minimum value $m^{*}$ of $m$.

2015 Dutch BxMO/EGMO TST, 2

Given are positive integers $r$ and $k$ and an infi nite sequence of positive integers $a_1 \le a_2 \le ...$ such that $\frac{r}{a_r}= k + 1$. Prove that there is a $t$ satisfying $\frac{t}{a_t}=k$.

2001 IMO Shortlist, 3

Let $ a_1 \equal{} 11^{11}, \, a_2 \equal{} 12^{12}, \, a_3 \equal{} 13^{13}$, and $ a_n \equal{} |a_{n \minus{} 1} \minus{} a_{n \minus{} 2}| \plus{} |a_{n \minus{} 2} \minus{} a_{n \minus{} 3}|, n \geq 4.$ Determine $ a_{14^{14}}$.

1992 All Soviet Union Mathematical Olympiad, 570

Define the sequence $a_1 = 1, a_2, a_3, ...$ by $$a_{n+1} = a_1^2 + a_2 ^2 + a_3^2 + ... + a_n^2 + n$$ Show that $1$ is the only square in the sequence.

1998 IMO Shortlist, 8

Let $a_{0},a_{1},a_{2},\ldots $ be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2a_{j}+4a_{k}$, where $i,j$ and $k$ are not necessarily distinct. Determine $a_{1998}$.

2018 ELMO Shortlist, 3

Consider infinite sequences $a_1,a_2,\dots$ of positive integers satisfying $a_1=1$ and $$a_n \mid a_k+a_{k+1}+\dots+a_{k+n-1}$$ for all positive integers $k$ and $n.$ For a given positive integer $m,$ find the maximum possible value of $a_{2m}.$ [i]Proposed by Krit Boonsiriseth[/i]

2016 Peru IMO TST, 2

Determine how many $100$-positive integer sequences satisfy the two conditions following: - At least one term of the sequence is equal to $4$ or $5$. - Any two adjacent terms differ as a maximum in $2$.

2021 Korea Junior Math Olympiad, 2

Let $\{a_n\}$ be a sequence of integers satisfying the following conditions. [list] [*] $a_1=2021^{2021}$ [*] $0 \le a_k < k$ for all integers $k \ge 2$ [*] $a_1-a_2+a_3-a_4+ \cdots + (-1)^{k+1}a_k$ is multiple of $k$ for all positive integers $k$. [/list] Determine the $2021^{2022}$th term of the sequence $\{a_n\}$.

2018 ELMO Problems, 2

Consider infinite sequences $a_1,a_2,\dots$ of positive integers satisfying $a_1=1$ and $$a_n \mid a_k+a_{k+1}+\dots+a_{k+n-1}$$ for all positive integers $k$ and $n.$ For a given positive integer $m,$ find the maximum possible value of $a_{2m}.$ [i]Proposed by Krit Boonsiriseth[/i]

2015 Dutch BxMO/EGMO TST, 2

Given are positive integers $r$ and $k$ and an infi nite sequence of positive integers $a_1 \le a_2 \le ...$ such that $\frac{r}{a_r}= k + 1$. Prove that there is a $t$ satisfying $\frac{t}{a_t}=k$.

1995 Nordic, 2

Messages are coded using sequences consisting of zeroes and ones only. Only sequences with at most two consecutive ones or zeroes are allowed. (For instance the sequence $011001$ is allowed, but $011101$ is not.) Determine the number of sequences consisting of exactly $12$ numbers.

1996 IMO, 6

Let $ p,q,n$ be three positive integers with $ p \plus{} q < n$. Let $ (x_{0},x_{1},\cdots ,x_{n})$ be an $ (n \plus{} 1)$-tuple of integers satisfying the following conditions : (a) $ x_{0} \equal{} x_{n} \equal{} 0$, and (b) For each $ i$ with $ 1\leq i\leq n$, either $ x_{i} \minus{} x_{i \minus{} 1} \equal{} p$ or $ x_{i} \minus{} x_{i \minus{} 1} \equal{} \minus{} q$. Show that there exist indices $ i < j$ with $ (i,j)\neq (0,n)$, such that $ x_{i} \equal{} x_{j}$.

2020 Korea National Olympiad, 5

For some positive integer $n$, there exists $n$ different positive integers $a_1, a_2, ..., a_n$ such that $(1)$ $a_1=1, a_n=2000$ $(2)$ $\forall i\in \mathbb{Z}$ $s.t.$ $2\le i\le n, a_i -a_{i-1}\in \{-3,5\}$ Determine the maximum value of n.

2017 International Zhautykov Olympiad, 1

Let $(a_n)$ be sequnce of positive integers such that first $k$ members $a_1,a_2,...,a_k$ are distinct positive integers, and for each $n>k$, number $a_n$ is the smallest positive integer that can't be represented as a sum of several (possibly one) of the numbers $a_1,a_2,...,a_{n-1}$. Prove that $a_n=2a_{n-1}$ for all sufficently large $n$.

2018 Istmo Centroamericano MO, 3

Determine all sequences of integers $a_1, a_2,. . .,$ such that: (i) $1 \le a_i \le n$ for all $1 \le i \le n$. (ii) $| a_i - a_j| = | i - j |$ for any $1 \le i, j \le n$

2007 Korea Junior Math Olympiad, 1

A sequence $a_1,a_2,...,a_{2007}$ where $a_i \in\{2,3\}$ for $i = 1,2,...,2007$ and an integer sequence $x_1,x_2,...,x_{2007}$ satis fies the following: $a_ix_i + x_{i+2 }\equiv 0$ ($mod 5$) , where the indices are taken modulo $2007$. Prove that $x_1,x_2,...,x_{2007}$ are all multiples of $5$.

2016 Korea Winter Program Practice Test, 1

Find all $\{a_n\}_{n\ge 0}$ that satisfies the following conditions. (1) $a_n\in \mathbb{Z}$ (2) $a_0=0, a_1=1$ (3) For infinitly many $m$, $a_m=m$ (4) For every $n\ge2$, $\{2a_i-a_{i-1} | i=1, 2, 3, \cdots , n\}\equiv \{0, 1, 2, \cdots , n-1\}$ $\mod n$

2004 Iran MO (3rd Round), 13

Suppose $f$ is a polynomial in $\mathbb{Z}[X]$ and m is integer .Consider the sequence $a_i$ like this $a_1=m$ and $a_{i+1}=f(a_i)$ find all polynomials $f$ and alll integers $m$ that for each $i$: \[ a_i | a_{i+1}\]

2022 Korea National Olympiad, 3

Suppose that the sequence $\{a_n\}$ of positive integers satisfies the following conditions: [list] [*]For an integer $i \geq 2022$, define $a_i$ as the smallest positive integer $x$ such that $x+\sum_{k=i-2021}^{i-1}a_k$ is a perfect square. [*]There exists infinitely many positive integers $n$ such that $a_n=4\times 2022-3$. [/list] Prove that there exists a positive integer $N$ such that $\sum_{k=n}^{n+2021}a_k$ is constant for every integer $n \geq N$. And determine the value of $\sum_{k=N}^{N+2021}a_k$.

2016 Saint Petersburg Mathematical Olympiad, 1

In the sequence of integers $(a_n)$, the sum $a_m + a_n$ is divided by $m + n$ with any different $m$ and $n$. Prove that $a_n$ is a multiple of $n$ for any $n$.

2014 Balkan MO Shortlist, A5

$\boxed{A5}$Let $n\in{N},n>2$,and suppose $a_1,a_2,...,a_{2n}$ is a permutation of the numbers $1,2,...,2n$ such that $a_1<a_3<...<a_{2n-1}$ and $a_2>a_4>...>a_{2n}.$Prove that \[(a_1-a_2)^2+(a_3-a_4)^2+...+(a_{2n-1}-a_{2n})^2>n^3\]

2004 Switzerland Team Selection Test, 6

Find all finite sequences $(x_0, x_1, \ldots,x_n)$ such that for every $j$, $0 \leq j \leq n$, $x_j$ equals the number of times $j$ appears in the sequence.

2015 Taiwan TST Round 2, 1

Let the sequence $\{a_n\}$ satisfy $a_{n+1}=a_n^3+103,n=1,2,...$. Prove that at most one integer $n$ such that $a_n$ is a perfect square.

1996 Poland - Second Round, 4

Let $a_1$, $a_2$ ,..., $a_{99}$ be a sequence of digits from the set ${0,...,9}$ such that if for some $n$ ∈ $N$, $a_n = 1$, then $a_{n+1} \ne 2$, and if $a_n = 3$ then $a_{n+1} \ne 4$. Prove that there exist indices $k,l$ ∈ ${1,...,98}$ such that $a_k = a_l$ and $a_{k+1} = a_{l+1}$.