This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2022 Iran MO (3rd Round), 3

The point $M$ is the middle of the side $BC$ of the acute-angled triangle $ABC$ and the points $E$ and $F$ are respectively perpendicular foot of $M$ to the sides $AC$ and $AB$. The points $X$ and $Y$ lie on the plane such that $\triangle XEC\sim\triangle CEY$ and $\triangle BYF\sim\triangle XBF$(The vertices of triangles with this order are corresponded in the similarities) and the points $E$ and $F$ [u]don't[/u][neither] lie on the line $XY$. Prove that $XY\perp AM$.