Found problems: 283
1997 Canada National Olympiad, 1
Determine the number of pairs of positive integers $x,y$ such that $x\le y$, $\gcd (x,y)=5!$ and $\text{lcm}(x,y)=50!$.
2013 Saudi Arabia BMO TST, 2
For positive integers $a$ and $b$, $gcd (a, b)$ denote their greatest common divisor and $lcm (a, b)$ their least common multiple. Determine the number of ordered pairs (a,b) of positive integers satisfying the equation $ab + 63 = 20\, lcm (a, b) + 12\, gcd (a,b)$
2004 Tuymaada Olympiad, 4
It is known that $m$ and $n$ are positive integers, $m > n^{n-1}$, and all the numbers $m+1$, $m+2$, \dots, $m+n$ are composite. Prove that there exist such different primes $p_1$, $p_2$, \dots, $p_n$ that $p_k$ divides $m+k$ for $k = 1$, 2, \dots, $n$.
[i]Proposed by C. A. Grimm [/i]
2021 Bolivian Cono Sur TST, 2
Find all posible pairs of positive integers $x,y$ such that $$\text{lcm}(x,y+3001)=\text{lcm}(y,x+3001)$$
2014 Contests, 1
Numbers $1$ through $2014$ are written on a board. A valid operation is to erase two numbers $a$ and $b$ on the board and replace them with the greatest common divisor and the least common multiple of $a$ and $b$.
Prove that, no matter how many operations are made, the sum of all the numbers that remain on the board is always larger than $2014$ $\times$ $\sqrt[2014]{2014!}$
1994 All-Russian Olympiad, 5
Prove that, for any natural numbers $k,m,n$: $[k,m] \cdot [m,n] \cdot [n,k] \ge [k,m,n]^2$
1985 IMO Longlists, 4
Let $x, y$, and $z$ be real numbers satisfying $x + y + z = xyz.$ Prove that
\[x(1 - y^2)(1 - z^2) + y(1 -z^2)(1 - x^2) + z(1 - x^2)(1 - y^2) = 4xyz.\]
2015 Iran Team Selection Test, 2
Assume that $a_1, a_2, a_3$ are three given positive integers consider the following sequence:
$a_{n+1}=\text{lcm}[a_n, a_{n-1}]-\text{lcm}[a_{n-1}, a_{n-2}]$ for $n\ge 3$
Prove that there exist a positive integer $k$ such that $k\le a_3+4$ and $a_k\le 0$.
($[a, b]$ means the least positive integer such that$ a\mid[a,b], b\mid[a, b]$ also because $\text{lcm}[a, b]$ takes only nonzero integers this sequence is defined until we find a zero number in the sequence)
1950 Miklós Schweitzer, 5
Let $ 1\le a_1<a_2<\cdots<a_m\le N$ be a sequence of integers such that the least common multiple of any two of its elements is not greater than $ N$. Show that $ m\le 2\left[\sqrt{N}\right]$, where $ \left[\sqrt{N}\right]$ denotes the greatest integer $ \le \sqrt{N}$
2008 Tournament Of Towns, 2
Can it happen that the least common multiple of $1, 2,... , n$ is $2008$ times the least common multiple of $1, 2, ... , m$ for some positive integers $m$ and $n$ ?
2014 JHMMC 7 Contest, 10
Find the sum of the greatest common factor and the least common multiple of $12$ and $18$.
2012 Albania Team Selection Test, 4
Find all couples of natural numbers $(a,b)$ not relatively prime ($\gcd(a,b)\neq\ 1$) such that
\[\gcd(a,b)+9\operatorname{lcm}[a,b]+9(a+b)=7ab.\]
2016 AMC 8, 20
The least common multiple of $a$ and $b$ is $12$, and the least common multiple of $b$ and $c$ is $15$. What is the least possible value of the least common multiple of $a$ and $c$?
$\textbf{(A) }20\qquad\textbf{(B) }30\qquad\textbf{(C) }60\qquad\textbf{(D) }120\qquad \textbf{(E) }180$
1998 AIME Problems, 1
For how many values of $k$ is $12^{12}$ the least common multiple of the positive integers $6^6, 8^8,$ and $k$?
1988 AIME Problems, 8
The function $f$, defined on the set of ordered pairs of positive integers, satisfies the following properties:
\begin{eqnarray*} f(x,x) &=& x, \\ f(x,y) &=& f(y,x), \quad \text{and} \\ (x + y) f(x,y) &=& yf(x,x + y). \end{eqnarray*}
Calculate $f(14,52)$.
1959 AMC 12/AHSME, 9
A farmer divides his herd of $n$ cows among his four sons so that one son gets one-half the herd, a second son, one-fourth, a third son, one-fifth, and the fourth son, 7 cows. Then $n$ is:
$ \textbf{(A)}\ 80 \qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 140\qquad\textbf{(D)}\ 180\qquad\textbf{(E)}\ 240 $
2025 Francophone Mathematical Olympiad, 4
Charlotte writes the integers $1,2,3,\ldots,2025$ on the board. Charlotte has two operations available: the GCD operation and the LCM operation.
[list]
[*]The GCD operation consists of choosing two integers $a$ and $b$ written on the board, erasing them, and writing the integer $\operatorname{gcd}(a, b)$.
[*]The LCM operation consists of choosing two integers $a$ and $b$ written on the board, erasing them, and writing the integer $\operatorname{lcm}(a, b)$.
[/list]
An integer $N$ is called a [i]winning number[/i] if there exists a sequence of operations such that, at the end, the only integer left on the board is $N$. Find all winning integers among $\{1,2,3,\ldots,2025\}$ and, for each of them, determine the minimum number of GCD operations Charlotte must use.
[b]Note:[/b] The number $\operatorname{gcd}(a, b)$ denotes the [i]greatest common divisor[/i] of $a$ and $b$, while the number $\operatorname{lcm}(a, b)$ denotes the [i]least common multiple[/i] of $a$ and $b$.
2010 NZMOC Camp Selection Problems, 4
Find all positive integer solutions $(a, b)$ to the equation $$\frac{1}{a}+\frac{1}{b}+ \frac{n}{lcm(a,b)}=\frac{1}{gcd(a, b)}$$ for
(i) $n = 2007$;
(ii) $n = 2010$.
2014 Middle European Mathematical Olympiad, 7
A finite set of positive integers $A$ is called [i]meanly[/i] if for each of its nonempy subsets the arithmetic mean of its elements is also a positive integer. In other words, $A$ is meanly if $\frac{1}{k}(a_1 + \dots + a_k)$ is an integer whenever $k \ge 1$ and $a_1, \dots, a_k \in A$ are distinct.
Given a positive integer $n$, determine the least possible sum of the elements of a meanly $n$-element set.
PEN A Problems, 105
Find the smallest positive integer $n$ such that [list][*] $n$ has exactly $144$ distinct positive divisors, [*] there are ten consecutive integers among the positive divisors of $n$. [/list]
2011 NIMO Problems, 11
How many ordered pairs of positive integers $(m, n)$ satisfy the system
\begin{align*}
\gcd (m^3, n^2) & = 2^2 \cdot 3^2,
\\ \text{LCM} [m^2, n^3] & = 2^4 \cdot 3^4 \cdot 5^6,
\end{align*}
where $\gcd(a, b)$ and $\text{LCM}[a, b]$ denote the greatest common divisor and least common multiple of $a$ and $b$, respectively?
2009 Romanian Master of Mathematics, 1
For $ a_i \in \mathbb{Z}^ \plus{}$, $ i \equal{} 1, \ldots, k$, and $ n \equal{} \sum^k_{i \equal{} 1} a_i$, let $ d \equal{} \gcd(a_1, \ldots, a_k)$ denote the greatest common divisor of $ a_1, \ldots, a_k$.
Prove that $ \frac {d} {n} \cdot \frac {n!}{\prod\limits^k_{i \equal{} 1} (a_i!)}$ is an integer.
[i]Dan Schwarz, Romania[/i]
2011 NIMO Summer Contest, 11
How many ordered pairs of positive integers $(m, n)$ satisfy the system
\begin{align*}
\gcd (m^3, n^2) & = 2^2 \cdot 3^2,
\\ \text{LCM} [m^2, n^3] & = 2^4 \cdot 3^4 \cdot 5^6,
\end{align*}
where $\gcd(a, b)$ and $\text{LCM}[a, b]$ denote the greatest common divisor and least common multiple of $a$ and $b$, respectively?
2010 Portugal MO, 1
Giraldo wrote five distinct natural numbers on the vertices of a pentagon. And next he wrote on each side of the pentagon the least common multiple of the numbers written of the two vertices who were on that side and noticed that the five numbers written on the sides were equal. What is the smallest number Giraldo could have written on the sides?
1993 Greece National Olympiad, 6
What is the smallest positive integer than can be expressed as the sum of nine consecutive integers, the sum of ten consecutive integers, and the sum of eleven consecutive integers?