Found problems: 283
2010 Indonesia TST, 3
For every natural number $ n $, define $ s(n) $ as the smallest natural number so that for every natural number $ a $ relatively prime to $n$, this equation holds: \[ a^{s(n)} \equiv 1 (mod n) \]
Find all natural numbers $ n $ such that $ s(n) = 2010 $
2004 Tuymaada Olympiad, 4
It is known that $m$ and $n$ are positive integers, $m > n^{n-1}$, and all the numbers $m+1$, $m+2$, \dots, $m+n$ are composite. Prove that there exist such different primes $p_1$, $p_2$, \dots, $p_n$ that $p_k$ divides $m+k$ for $k = 1$, 2, \dots, $n$.
[i]Proposed by C. A. Grimm [/i]
2013 IberoAmerican, 1
A set $S$ of positive integers is said to be [i]channeler[/i] if for any three distinct numbers $a,b,c \in S$, we have $a\mid bc$, $b\mid ca$, $c\mid ab$.
a) Prove that for any finite set of positive integers $ \{ c_1, c_2, \ldots, c_n \} $ there exist infinitely many positive integers $k$, such that the set $ \{ kc_1, kc_2, \ldots, kc_n \} $ is a channeler set.
b) Prove that for any integer $n \ge 3$ there is a channeler set who has exactly $n$ elements, and such that no integer greater than $1$ divides all of its elements.
1985 IMO Longlists, 4
Let $x, y$, and $z$ be real numbers satisfying $x + y + z = xyz.$ Prove that
\[x(1 - y^2)(1 - z^2) + y(1 -z^2)(1 - x^2) + z(1 - x^2)(1 - y^2) = 4xyz.\]
2011 AMC 10, 23
What is the hundreds digit of $2011^{2011}$?
$ \textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 4 \qquad
\textbf{(C)}\ 5 \qquad
\textbf{(D)}\ 6 \qquad
\textbf{(E)}\ 9 $
1982 Kurschak Competition, 2
Prove that for any integer $k > 2$, there exist infinitely many positive integers $n$ such that the least common multiple of $n$, $n + 1$,$...$, $n + k - 1$ is greater than the least common multiple of $n + 1$,$n + 2$,$...$, $n + k$.
2019 Philippine MO, 3
Find all triples $(a, b, c)$ of positive integers such that
$a^2 + b^2 = n\cdot lcm(a, b) + n^2$
$b^2 + c^2 = n \cdot lcm(b, c) + n^2$
$c^2 + a^2 = n \cdot lcm(c, a) + n^2$
for some positive integer $n$.
1979 Canada National Olympiad, 3
Let $a$, $b$, $c$, $d$, $e$ be integers such that $1 \le a < b < c < d < e$. Prove that
\[\frac{1}{[a,b]} + \frac{1}{[b,c]} + \frac{1}{[c,d]} + \frac{1}{[d,e]} \le \frac{15}{16},\]
where $[m,n]$ denotes the least common multiple of $m$ and $n$ (e.g. $[4,6] = 12$).
2008 ISI B.Stat Entrance Exam, 9
Suppose $S$ is the set of all positive integers. For $a,b \in S$, define
\[a * b=\frac{\text{lcm}[a,b]}{\text{gcd}(a,b)}\]
For example $8*12=6$.
Show that [b]exactly two[/b] of the following three properties are satisfied:
(i) If $a,b \in S$, then $a*b \in S$.
(ii) $(a*b)*c=a*(b*c)$ for all $a,b,c \in S$.
(iii) There exists an element $i \in S$ such that $a *i =a$ for all $a \in S$.
2010 Portugal MO, 1
Giraldo wrote five distinct natural numbers on the vertices of a pentagon. And next he wrote on each side of the pentagon the least common multiple of the numbers written of the two vertices who were on that side and noticed that the five numbers written on the sides were equal. What is the smallest number Giraldo could have written on the sides?
2013 AMC 10, 17
Daphne is visited periodically by her three best friends: Alice, Beatrix, and Claire. Alice visits every third day, Beatrix visits every fourth day, and Claire visits every fifth day. All three friends visited Daphne yesterday. How many days of the next $365$-day period will exactly two friends visit her?
$\textbf{(A) }48\qquad
\textbf{(B) }54\qquad
\textbf{(C) }60\qquad
\textbf{(D) }66\qquad
\textbf{(E) }72\qquad$
2018 Switzerland - Final Round, 3
Determine all natural integers $n$ for which there is no triplet $(a, b, c)$ of natural numbers such that:
$$n = \frac{a \cdot \,\,lcm(b, c) + b \cdot lcm \,\,(c, a) + c \cdot lcm \,\, (a, b)}{lcm \,\,(a, b, c)}$$
2015 AMC 10, 4
Four siblings ordered an extra large pizza. Alex ate $\frac15$, Beth $\frac13$, and Cyril $\frac14$ of the pizza. Dan got the leftovers. What is the sequence of the siblings in decreasing order of the part of pizza they consumed?
$\textbf{(A) } \text{Alex, Beth, Cyril, Dan}$
$\textbf{(B) } \text{Beth, Cyril, Alex, Dan}$
$\textbf{(C) } \text{Beth, Cyril, Dan, Alex}$
$\textbf{(D) } \text{Beth, Dan, Cyril, Alex}$
$\textbf{(E) } \text{Dan, Beth, Cyril, Alex}$
2024 Brazil EGMO TST, 3
Consider 90 distinct positive integers. Show that there exist two of them whose least common multiple is greater than 2024.
2006 Iran Team Selection Test, 1
Suppose that $p$ is a prime number.
Find all natural numbers $n$ such that $p|\varphi(n)$ and for all $a$ such that $(a,n)=1$ we have
\[ n|a^{\frac{\varphi(n)}{p}}-1 \]
2023 Costa Rica - Final Round, 3.2
Find all ordered pairs of positive integers $(r, s)$ for which there are exactly $35$ ordered pairs of positive integers $(a, b)$ such that the least common multiple of $a$ and $b$ is $2^r \cdot 3^s$.
2008 Romania National Olympiad, 3
Let $ A$ be a unitary finite ring with $ n$ elements, such that the equation $ x^n\equal{}1$ has a unique solution in $ A$, $ x\equal{}1$. Prove that
a) $ 0$ is the only nilpotent element of $ A$;
b) there exists an integer $ k\geq 2$, such that the equation $ x^k\equal{}x$ has $ n$ solutions in $ A$.
2013 Korea National Olympiad, 5
Find all functions $f : \mathbb{N} \rightarrow \mathbb{N} $ satisfying
\[ f(mn) = \operatorname{lcm} (m,n) \cdot \gcd( f(m), f(n) ) \]
for all positive integer $m,n$.
2019 Singapore Senior Math Olympiad, 3
Let $a_1,a_2,\cdots,a_{2000}$ be distinct positive integers such that $1 \leq a_1 < a_2 < \cdots < a_{2000} < 4000$ such that the LCM (least common multiple) of any two of them is $\geq 4000$. Show that $a_1 \geq 1334$
2012 JBMO TST - Turkey, 1
Find the greatest positive integer $n$ for which $n$ is divisible by all positive integers whose cube is not greater than $n.$
1962 Kurschak Competition, 1
Show that the number of ordered pairs $(a, b)$ of positive integers with lowest common multiple $n$ is the same as the number of positive divisors of $n^2$.
2010 China Northern MO, 7
Find all positive integers $x, y, z$ that satisfy the conditions: $$[x,y,z] =(x,y)+(y,z) + (z,x), x\le y\le z, (x,y,z) = 1$$
The symbols $[m,n]$ and $(m,n)$ respectively represent positive integers, the least common multiple and the greatest common divisor of $m$ and $n$.
2023 Indonesia MO, 5
Let $a$ and $b$ be positive integers such that $\text{gcd}(a, b) + \text{lcm}(a, b)$ is a multiple of $a+1$. If $b \le a$, show that $b$ is a perfect square.
2011 Cuba MO, 7
Find a set of positive integers with the greatest possible number of elements such that the least common multiple of all of them is less than $2011$.
2021 China Team Selection Test, 6
Given positive integer $n$ and $r$ pairwise distinct primes $p_1,p_2,\cdots,p_r.$ Initially, there are $(n+1)^r$ numbers written on the blackboard: $p_1^{i_1}p_2^{i_2}\cdots p_r^{i_r} (0 \le i_1,i_2,\cdots,i_r \le n).$
Alice and Bob play a game by making a move by turns, with Alice going first. In Alice's round, she erases two numbers $a,b$ (not necessarily different) and write $\gcd(a,b)$. In Bob's round, he erases two numbers $a,b$ (not necessarily different) and write $\mathrm{lcm} (a,b)$. The game ends when only one number remains on the blackboard.
Determine the minimal possible $M$ such that Alice could guarantee the remaining number no greater than $M$, regardless of Bob's move.