This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 27

2023 Poland - Second Round, 3

Given positive integers $k,n$ and a real number $\ell$, where $k,n \geq 1$. Given are also pairwise different positive real numbers $a_1,a_2,\ldots, a_k$. Let $S = \{a_1,a_2,\ldots,a_k, -a_1, -a_2,\ldots, -a_k\}$. Let $A$ be the number of solutions of the equation $$x_1 + x_2 + \ldots + x_{2n} = 0,$$ where $x_1,x_2,\ldots, x_{2n} \in S$. Let $B$ be the number of solutions of the equation $$x_1 + x_2 + \ldots + x_{2n} = \ell,$$ where $x_1,x_2,\ldots,x_{2n} \in S$. Prove that $A \geq B$. Solutions of an equation with only difference in the permutation are different.

2006 Flanders Math Olympiad, 2

Let $\triangle ABC$ be an equilateral triangle and let $P$ be a point on $\left[AB\right]$. $Q$ is the point on $BC$ such that $PQ$ is perpendicular to $AB$. $R$ is the point on $AC$ such that $QR$ is perpendicular to $BC$. And $S$ is the point on $AB$ such that $RS$ is perpendicular to $AC$. $Q'$ is the point on $BC$ such that $PQ'$ is perpendicular to $BC$. $R'$ is the point on $AC$ such that $Q'R'$ is perpendicular to $AC$. And $S'$ is the point on $AB$ such that $R'S'$ is perpendicular to $AB$. Determine $\frac{|PB|}{|AB|}$ if $S=S'$.