This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 India IMOTC, 22

Let $ABC$ be a triangle with circumcenter $O$ and $\angle BAC = 60^{\circ}$. The internal angle bisector of $\angle BAC$ meets line $BC$ and the circumcircle of $\triangle ABC$ in points $M,L$ respectively. Let $K$ denote the reflection of $BL\cap AC$ over the line $BC$. Let $D$ be on the line $CO$ with $DM$ perpendicular to $KL$. Prove that points $K,A,D$ are collinear. [i]Proposed by Sanjana Philo Chacko[/i]