This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2010 Tournament Of Towns, 5

$33$ horsemen are riding in the same direction along a circular road. Their speeds are constant and pairwise distinct. There is a single point on the road where the horsemen can surpass one another. Can they ride in this fashion for arbitrarily long time ?

2009 AMC 12/AHSME, 24

For how many values of $ x$ in $ [0,\pi]$ is $ \sin^{\minus{}1}(\sin 6x)\equal{}\cos^{\minus{}1}(\cos x)$? Note: The functions $ \sin^{\minus{}1}\equal{}\arcsin$ and $ \cos^{\minus{}1}\equal{}\arccos$ denote inverse trigonometric functions. $ \textbf{(A)}\ 3\qquad \textbf{(B)}\ 4\qquad \textbf{(C)}\ 5\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 7$