This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2021 Turkey Team Selection Test, 5

In a non isoceles triangle $ABC$, let the perpendicular bisector of $[BC]$ intersect $(ABC)$ at $M$ and $N$ respectively. Let the midpoints of $[AM]$ and $[AN]$ be $K$ and $L$ respectively. Let $(ABK)$ and $(ABL)$ intersect $AC$ again at $D$ and $E$ respectively, let $(ACK)$ and $(ACL)$ intersect $AB$ again at $F$ and $G$ respectively. Prove that the lines $DF$, $EG$ and $MN$ are concurrent.

2021 Middle European Mathematical Olympiad, 5

Let $AD$ be the diameter of the circumcircle of an acute triangle $ABC$. The lines through $D$ parallel to $AB$ and $AC$ meet lines $AC$ and $AB$ in points $E$ and $F$, respectively. Lines $EF$ and $BC$ meet at $G$. Prove that $AD$ and $DG$ are perpendicular.