This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2017 Vietnamese Southern Summer School contest, Problem 4

In a square board of size 1001 x 1001, we color some $m$ cells in such a way that: i. Of any two cells that share an edge, at least one is colored. ii. Of any 6 consecutive cells in a column or a row, at least 2 consecutive ones are colored. Determine the smallest possible value of $m$.

2020 USOMO, 1

Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized. [i]Proposed by Zuming Feng[/i]