Found problems: 2008
2007 Princeton University Math Competition, 2
How many positive integers $n$ are there such that $n+2$ divides $(n+18)^2$?
MathLinks Contest 7th, 3.1
Let $ p$ be a prime and let $ d \in \left\{0,\ 1,\ \ldots,\ p\right\}$. Prove that
\[ \sum_{k \equal{} 0}^{p \minus{} 1}{\binom{2k}{k \plus{} d}}\equiv r \pmod{p},
\]where $ r \equiv p\minus{}d \pmod 3$, $ r\in\{\minus{}1,0,1\}$.
PEN B Problems, 4
Let $g$ be a Fibonacci primitive root $\pmod{p}$. i.e. $g$ is a primitive root $\pmod{p}$ satisfying $g^2 \equiv g+1\; \pmod{p}$. Prove that [list=a] [*] $g-1$ is also a primitive root $\pmod{p}$. [*] if $p=4k+3$ then $(g-1)^{2k+3} \equiv g-2 \pmod{p}$, and deduce that $g-2$ is also a primitive root $\pmod{p}$. [/list]
2011 National Olympiad First Round, 14
What is the remainder when $2011^{(2011^{(2011^{(2011^{2011})})})}$ is divided by $19$ ?
$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ 1$
2005 Brazil National Olympiad, 6
Given positive integers $a,c$ and integer $b$, prove that there exists a positive integer $x$ such that
\[ a^x + x \equiv b \pmod c, \]
that is, there exists a positive integer $x$ such that $c$ is a divisor of $a^x + x - b$.
2003 Gheorghe Vranceanu, 3
Show that $ n\equiv 0\pmod 9 $ if $ 2^n\equiv -1\pmod n, $ where $ n $ is a natural number greater than $ 3. $
2014 Contests, 2
Let $n \ge 2$ be an integer. Show that there exist $n+1$ numbers $x_1, x_2, \ldots, x_{n+1} \in \mathbb{Q} \setminus \mathbb{Z}$, so that
$\{ x_1^3 \} + \{ x_2^3 \} + \cdots + \{ x_n^3 \}=\{ x_{n+1}^3 \}$, where $\{ x \}$ is the fractionary part of $x$.
2014 Contests, 4
The sum of two prime numbers is $85$. What is the product of these two prime numbers?
$\textbf{(A) }85\qquad\textbf{(B) }91\qquad\textbf{(C) }115\qquad\textbf{(D) }133\qquad \textbf{(E) }166$
2000 Romania Team Selection Test, 1
Let $a>1$ be an odd positive integer. Find the least positive integer $n$ such that $2^{2000}$ is a divisor of $a^n-1$.
[i]Mircea Becheanu [/i]
2004 National Olympiad First Round, 30
How many primes $p$ are there such that the number of positive divisors of $p^2+23$ is equal to $14$?
$
\textbf{(A)}\ 0
\qquad\textbf{(B)}\ 1
\qquad\textbf{(C)}\ 2
\qquad\textbf{(D)}\ 3
\qquad\textbf{(E)}\ \text{None of above}
$
1986 IMO Longlists, 71
Two straight lines perpendicular to each other meet each side of a triangle in points symmetric with respect to the midpoint of that side. Prove that these two lines intersect in a point on the nine-point circle.
2011 Irish Math Olympiad, 3
The integers $a_0, a_1, a_2, a_3,\ldots$ are defined as follows:
$a_0 = 1$, $a_1 = 3$, and $a_{n+1} = a_n + a_{n-1}$ for all $n \ge 1$.
Find all integers $n \ge 1$ for which $na_{n+1} + a_n$ and $na_n + a_{n-1}$ share a common factor greater than $1$.
2014 ELMO Shortlist, 6
Show that the numerator of \[ \frac{2^{p-1}}{p+1} - \left(\sum_{k = 0}^{p-1}\frac{\binom{p-1}{k}}{(1-kp)^2}\right) \] is a multiple of $p^3$ for any odd prime $p$.
[i]Proposed by Yang Liu[/i]
2009 Hong kong National Olympiad, 4
find all pairs of non-negative integer pairs $(m,n)$,satisfies
$107^{56}(m^{2}-1)+2m+3=\binom{113^{114}}{n}$
2013 Benelux, 4
a) Find all positive integers $g$ with the following property: for each odd prime number $p$ there exists a positive integer $n$ such that $p$ divides the two integers
\[g^n - n\quad\text{ and }\quad g^{n+1} - (n + 1).\]
b) Find all positive integers $g$ with the following property: for each odd prime number $p$ there exists a positive integer $n$ such that $p$ divides the two integers
\[g^n - n^2\quad\text{ and }g^{n+1} - (n + 1)^2.\]
2024 Bangladesh Mathematical Olympiad, P1
Find all prime numbers $p$ and $q$ such that\[p^3-3^q=10.\]
[i]Proposed by Md. Fuad Al Alam[/i]
2014 Baltic Way, 18
Let $p$ be a prime number, and let $n$ be a positive integer. Find the number of quadruples $(a_1, a_2, a_3, a_4)$ with $a_i\in \{0, 1, \ldots, p^n - 1\}$ for $i = 1, 2, 3, 4$, such that \[p^n \mid (a_1a_2 + a_3a_4 + 1).\]
2004 Tournament Of Towns, 5
How many different ways are there to write 2004 as a sum of one or more positive integers which are all "aproximately equal" to each other? Two numbers are called aproximately equal if their difference is at most 1. The order of terms does not matter: two ways which only differ in the order of terms are not considered different.
2019 Danube Mathematical Competition, 1
Find all prime $p$ numbers such that $p^3-4p+9$ is perfect square.
2012 ELMO Problems, 6
A diabolical combination lock has $n$ dials (each with $c$ possible states), where $n,c>1$. The dials are initially set to states $d_1, d_2, \ldots, d_n$, where $0\le d_i\le c-1$ for each $1\le i\le n$. Unfortunately, the actual states of the dials (the $d_i$'s) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount $c_i$ ($0\le c_i\le c-1$), so that every dial is now in a state $d_i '\equiv d_i+c_i \pmod{c}$ with $0\le d_i ' \le c-1$. After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer $k$ and cyclically shifts the $d_i$'s by $k$ (so that for every $i$, $d_i$ is replaced by $d_{i-k}$, where indices are taken modulo $n$).
Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of $k$ (which may vary from turn to turn), if and only if $n$ and $c$ are powers of the same prime.
[i]Bobby Shen.[/i]
2000 Bulgaria National Olympiad, 3
Let $ p$ be a prime number and let $ a_1,a_2,\ldots,a_{p \minus{} 2}$ be positive integers such that $ p$ doesn't $ a_k$ or $ {a_k}^k \minus{} 1$ for any $ k$. Prove that the product of some of the $ a_i$'s is congruent to $ 2$ modulo $ p$.
1986 IMO Shortlist, 5
Let $d$ be any positive integer not equal to $2, 5$ or $13$. Show that one can find distinct $a,b$ in the set $\{2,5,13,d\}$ such that $ab-1$ is not a perfect square.
1995 Cono Sur Olympiad, 3
Let $n$ be a natural number and $f(n) = 2n - 1995 \lfloor \frac{n}{1000} \rfloor$($\lfloor$ $\rfloor$ denotes the floor function).
1. Show that if for some integer $r$: $f(f(f...f(n)...))=1995$ (where the function $f$ is applied $r$ times), then $n$ is multiple of $1995$.
2. Show that if $n$ is multiple of 1995, then there exists r such that:$f(f(f...f(n)...))=1995$ (where the function $f$ is applied $r$ times). Determine $r$ if $n=1995.500=997500$
2010 Baltic Way, 16
For a positive integer $k$, let $d(k)$ denote the number of divisors of $k$ and let $s(k)$ denote the digit sum of $k$. A positive integer $n$ is said to be [i]amusing[/i] if there exists a positive integer $k$ such that $d(k)=s(k)=n$. What is the smallest amusing odd integer greater than $1$?
2007 Romania Team Selection Test, 4
i) Find all infinite arithmetic progressions formed with positive integers such that there exists a number $N \in \mathbb{N}$, such that for any prime $p$, $p > N$,
the $p$-th term of the progression is also prime.
ii) Find all polynomials $f(X) \in \mathbb{Z}[X]$, such that there exist $N \in \mathbb{N}$, such that for any prime $p$, $p > N$, $| f(p) |$ is also prime.
[i]Dan Schwarz[/i]